【摄像头标定】双目摄像头标定及矫正-opencv(python)

双目摄像头标定及矫正

    • 棋盘格标定板
    • 标定
    • 矫正

棋盘格标定板

本文使用棋盘格标定板,可以到这篇博客中下载:https://blog.csdn.net/qq_39330520/article/details/107864568
在这里插入图片描述

标定

要进行标定首先需要双目拍的棋盘格图片,20张左右,由于本文的双目摄像头嵌入在开发板底板中,并且使用的是ros进行开发,所以对于大部分人拍照这里是没有参考价值的,对于也是使用ros开发的小伙伴,需要写一个节点发布双目摄像头的图像数据,然后再写一个节点订阅双目摄像头数据进行拍照保存。本文重点也不在拍照,对于其他小伙伴可以直接搜索一些适用的拍照方法,只要能获得到图片即可。
左摄像头图片如下:
在这里插入图片描述
右摄像头图片如下:
在这里插入图片描述
由于摄像头底层代码有问题,所以图像很暗,但不影响标定。
标定代码如下:

import cv2
import os
import numpy as np
import itertools
import yaml# 定义文件夹路径
left_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic"
right_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic"# 获取图像文件列表并排序
left_images = sorted(os.listdir(left_folder))
right_images = sorted(os.listdir(right_folder))# 确保左右相机图像数量一致
assert len(left_images) == len(right_images), "左右相机图像数量不一致"# 加载两个摄像头图片文件夹并将里面的彩图转换为灰度图
def load_images(folder, images):img_list = []for img_name in images:img_path = os.path.join(folder, img_name)frame = cv2.imread(img_path)if frame is not None:gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)img_list.append((frame, gray))else:print(f"无法读取图像: {img_path}")return img_list# 检测棋盘格角点
def get_corners(imgs, pattern_size):corners = []for frame, gray in imgs:ret, c = cv2.findChessboardCorners(gray, pattern_size)     #ret 表示是否成功找到棋盘格角点,c 是一个数组,包含了检测到的角点的坐标if not ret:print("未能检测到棋盘格角点")continuec = cv2.cornerSubPix(gray, c, (5, 5), (-1, -1),(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001))     #cv2.cornerSubPix 函数用于提高棋盘格角点的精确度,对初始检测到的角点坐标 c 进行优化corners.append(c)      #将优化后的角点坐标 c 添加到 corners 列表中# 绘制角点并显示vis = frame.copy()cv2.drawChessboardCorners(vis, pattern_size, c, ret)new_size = (1280, 800)resized_img = cv2.resize(vis, new_size)cv2.imshow('Corners', resized_img)cv2.waitKey(150)return corners# 相机标定
def calibrate_camera(object_points, corners, imgsize):cm_input = np.eye(3, dtype=np.float32)ret = cv2.calibrateCamera(object_points, corners, imgsize, cm_input, None)return retdef save_calibration_to_yaml(file_path, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F):data = {'camera_matrix_left': {'rows': 3,'cols': 3,'dt': 'd','data': cameraMatrix_l.flatten().tolist()},'dist_coeff_left': {'rows': 1,'cols': 5,'dt': 'd','data': distCoeffs_l.flatten().tolist()},'camera_matrix_right': {'rows': 3,'cols': 3,'dt': 'd','data': cameraMatrix_r.flatten().tolist()},'dist_coeff_right': {'rows': 1,'cols': 5,'dt': 'd','data': distCoeffs_r.flatten().tolist()},'R': {'rows': 3,'cols': 3,'dt': 'd','data': R.flatten().tolist()},'T': {'rows': 3,'cols': 1,'dt': 'd','data': T.flatten().tolist()},'E': {'rows': 3,'cols': 3,'dt': 'd','data': E.flatten().tolist()},'F': {'rows': 3,'cols': 3,'dt': 'd','data': F.flatten().tolist()}}with open(file_path, 'w') as file:yaml.dump(data, file, default_flow_style=False)print(f"Calibration parameters saved to {file_path}")img_left = load_images(left_folder, left_images)      #img_left是个列表,存放左摄像头所有的灰度图片。
img_right = load_images(right_folder, right_images)
pattern_size = (8, 5)
corners_left = get_corners(img_left, pattern_size)       #corners_left的长度表示检测到棋盘格角点的图像数量。corners_left[i] 和 corners_right[i] 中存储了第 i 张图像检测到的棋盘格角点的二维坐标。
corners_right = get_corners(img_right, pattern_size)
cv2.destroyAllWindows()# 断言,确保所有图像都检测到角点
assert len(corners_left) == len(img_left), "有图像未检测到左相机的角点"
assert len(corners_right) == len(img_right), "有图像未检测到右相机的角点"# 准备标定所需数据
points = np.zeros((8 * 5, 3), dtype=np.float32)   #创建40 行 3 列的零矩阵,用于存储棋盘格的三维坐标点。棋盘格的大小是 8 行 5 列,40 个角点。数据类型为 np.float32,这是一张图的,因为一个角点对应一个三维坐标
points[:, :2] = np.mgrid[0:8, 0:5].T.reshape(-1, 2) * 21  #给这些点赋予实际的物理坐标,* 21 是因为每个棋盘格的大小为 21mmobject_points = [points] * len(corners_left)     #包含了所有图像中棋盘格的三维物理坐标点 points。这里假设所有图像中棋盘格的物理坐标是相同的,因此用 points 复制 len(corners_left) 次。
imgsize = img_left[0][1].shape[::-1]     #img_left[0] 是左相机图像列表中的第一张图像。img_left[0][1] 是该图像的灰度图像。shape[::-1] 取灰度图像的宽度和高度,并反转顺序,以符合 calibrateCamera 函数的要求。print('开始左相机标定')
ret_l = calibrate_camera(object_points, corners_left, imgsize)    #object_points表示标定板上检测到的棋盘格角点的三维坐标;corners_left[i]表示棋盘格角点在图像中的二维坐标;imgsize表示图像大小
retval_l, cameraMatrix_l, distCoeffs_l, rvecs_l, tvecs_l = ret_l[:5]    #返回值里就包含了标定的参数print('开始右相机标定')
ret_r = calibrate_camera(object_points, corners_right, imgsize)
retval_r, cameraMatrix_r, distCoeffs_r, rvecs_r, tvecs_r = ret_r[:5]# 立体标定,得到左右相机的外参:旋转矩阵、平移矩阵、本质矩阵、基本矩阵
print('开始立体标定')
criteria_stereo = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-5)
ret_stereo = cv2.stereoCalibrate(object_points, corners_left, corners_right,cameraMatrix_l, distCoeffs_l,cameraMatrix_r, distCoeffs_r,imgsize, criteria=criteria_stereo,flags=cv2.CALIB_FIX_INTRINSIC)
ret, _, _, _, _, R, T, E, F = ret_stereo# 输出结果
print("左相机内参:\n", cameraMatrix_l)
print("左相机畸变系数:\n", distCoeffs_l)
print("右相机内参:\n", cameraMatrix_r)
print("右相机畸变系数:\n", distCoeffs_r)
print("旋转矩阵 R:\n", R)
print("平移向量 T:\n", T)
print("本质矩阵 E:\n", E)
print("基本矩阵 F:\n", F)
print("标定完成")# 保存标定结果
save_calibration_to_yaml('calibration_parameters.yaml', cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F)# 计算重投影误差
def compute_reprojection_errors(objpoints, imgpoints, rvecs, tvecs, mtx, dist):total_error = 0total_points = 0for i in range(len(objpoints)):imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)total_error += errortotal_points += len(imgpoints2)mean_error = total_error / total_pointsreturn mean_error# 计算并打印左相机和右相机的重投影误差
print("左相机重投影误差: ", compute_reprojection_errors(object_points, corners_left, rvecs_l, tvecs_l, cameraMatrix_l, distCoeffs_l))
print("右相机重投影误差: ", compute_reprojection_errors(object_points, corners_right, rvecs_r, tvecs_r, cameraMatrix_r, distCoeffs_r))# 立体矫正和显示
def stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T):img_size = img_l.shape[:2][::-1]# 立体校正R1, R2, P1, P2, Q, _, _ = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, img_size, R, T)map1x, map1y = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)map2x, map2y = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)# 图像矫正rectified_img_l = cv2.remap(img_l, map1x, map1y, cv2.INTER_LINEAR)rectified_img_r = cv2.remap(img_r, map2x, map2y, cv2.INTER_LINEAR)# 显示矫正后的图像combined_img = np.hstack((rectified_img_l, rectified_img_r))cv2.imshow('Rectified Images', combined_img)cv2.imwrite("stereo_jiaozheng.png",combined_img)cv2.waitKey(0)cv2.destroyAllWindows()# 加载并矫正示例图像
example_idx = 0
img_l = img_left[example_idx][0]
img_r = img_right[example_idx][0]
stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T)

标定完成后会显示一张矫正后的图像。代码重要的地方都给出了注释,主要流程就是分别对左右相机进行标定,然后对两个相机进行联合标定(立体标定),最后得到的参数会保存到yaml文件中:

---
camera_matrix_left:rows: 3cols: 3dt: ddata:- 531.7200210313852- 0- 642.0170539101581- 0- 533.6471323984354- 420.4033045027399- 0- 0- 1
dist_coeff_left:rows: 1cols: 5dt: ddata:- -0.1670007968198256- 0.04560028196221921- 0.0011938487550718078- -0.000866537907860316- -0.00805042100882671
camera_matrix_right:rows: 3cols: 3dt: ddata:- 525.9058345430292- 0- 628.7761214904813- 0- 528.2078922687268- 381.8575789135264- 0- 0- 1
dist_coeff_right:rows: 1cols: 5dt: ddata:- -0.15320688387351564- 0.03439886104586617- -0.0003732170677440928- -0.0024909528446780153- -0.005138400994014348
R:rows: 3cols: 3dt: ddata:- 0.9999847004116569- -0.00041406631566505544- 0.005516112008926496- 0.0003183979929468572- 0.9998497209492369- 0.017333036100216304- -0.005522460079247196- -0.017331014592906722- 0.9998345554979852
T:rows: 3cols: 1dt: ddata:- -55.849260376265015- 2.1715925432988743- 0.46949841441903933
E:rows: 3cols: 3dt: ddata:- -0.012142020481601675- -0.5070637607007459- 2.1630954322858496- 0.1610659204031652- -0.9681187500627653- 55.84261022903612- -2.189341611238282- -55.83996821910631- -0.9800159939787676
F:rows: 3cols: 3dt: ddata:- -2.4239149875305048e-8- -0.0000010085973649868748- 0.0027356495714066175- 3.2013501988129346e-7- -0.0000019172863951399893- 0.05961765359743852- -0.002405523166325036- -0.057046539240958545- 1

分别是左相机的内参矩阵、畸变系数,右相机的内参矩阵和畸变系数,两个相机之间的旋转矩阵、平移矩阵、本质矩阵、基本矩阵。

矫正

import cv2
import yaml
import numpy as np# 定义函数读取标定数据
def read_calibration_data(calibration_file):with open(calibration_file, 'r') as f:calib_data = yaml.safe_load(f)cameraMatrix_l = np.array(calib_data['camera_matrix_left']['data']).reshape(3, 3)distCoeffs_l = np.array(calib_data['dist_coeff_left']['data'])cameraMatrix_r = np.array(calib_data['camera_matrix_right']['data']).reshape(3, 3)distCoeffs_r = np.array(calib_data['dist_coeff_right']['data'])R = np.array(calib_data['R']['data']).reshape(3, 3)T = np.array(calib_data['T']['data']).reshape(3, 1)return cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T# 定义函数对图像进行矫正
def rectify_images(left_image_path, right_image_path, calibration_file):# 读取标定数据cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T = read_calibration_data(calibration_file)# 读取左右图像img_left = cv2.imread(left_image_path)img_right = cv2.imread(right_image_path)# 获取图像尺寸(假设左右图像尺寸相同)img_size = img_left.shape[:2][::-1]# 立体校正R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l,cameraMatrix_r, distCoeffs_r,img_size, R, T)# 计算映射参数map1_l, map2_l = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)map1_r, map2_r = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)# 应用映射并显示结果rectified_img_l = cv2.remap(img_left, map1_l, map2_l, cv2.INTER_LINEAR)rectified_img_r = cv2.remap(img_right, map1_r, map2_r, cv2.INTER_LINEAR)# 合并图像显示combined_img = np.hstack((rectified_img_l, rectified_img_r))cv2.imshow('Rectified Images', combined_img)cv2.waitKey(0)cv2.destroyAllWindows()# 设置路径和文件名
left_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic/left_image0.png"
right_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic/right_image0.png"
calibration_file = "C:/new_pycharm_project/yolov10-main/calibration_parameters.yaml"# 调用函数进行图像矫正
rectify_images(left_image_path, right_image_path, calibration_file)

结果对比:
在这里插入图片描述
在这里插入图片描述
第一张是矫正前的左右相机图像,第二张是矫正后的。可以看到去除了畸变,并且两图像基本出于同一水平线。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/364290.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

30 哈希的应用

位图 概念 题目 给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何判断一个数是否在这40亿个整数中 1.遍历,时间复杂度O(N) 2.二分查找,需要先排序,排序(N*logN),二分查找,logN。…

装载问题(回溯法)

#include<iostream> using namespace std; int n;//货物的数量 int c;//轮船的总的载重量 int cw;//轮船当前的载重量 int r;//货物的总重量 int w[1000];//n个货物各自的重量 int x[1000];//当前最优解 int bestx[1000];//最优解 int bestw;//货物的最优载重量 void Bac…

[JS]对象

介绍 对象是一种无序的数据集合, 可以详细的描述某个事物 事物的特征在对象中用属性来表示, 事物的行为在对象中用方法来表示 使用 创建对象 let 对象名 {属性名&#xff1a;值&#xff0c;方法名&#xff1a;函数&#xff0c; } let 对象名 new Object(); 对象名.属性…

Typora failed to export as pdf. undefined

变换版本并没有用&#xff0c;调整图片大小没有用 我看到一个博客后尝试出方案 我的方法 解决&#xff1a;从上图中的A4&#xff0c;变为其他&#xff0c;然后变回A4 然后到处成功&#xff0c;Amazing&#xff01; 参考&#xff1a; Typora 导出PDF 报错 failed to export…

Rpc服务的提供方(Rpcprovider)的调用流程

首先&#xff0c;服务的提供方&#xff0c;会通过rpcprovider向rpc服务方注册rpc服务对象和服务方法&#xff0c; 那么&#xff0c;我们通过protobuf提供的抽象层的service和method&#xff0c;将服务对象和它所对应的服务方法记录在map表中&#xff0c; 当它启动以后&#xff…

WordPress Quiz Maker插件 SQL注入漏洞复现(CVE-2024-6028)

0x01 产品简介 WordPress Quiz Maker插件是一款功能强大的测验生成工具,旨在帮助用户轻松、快速地构建复杂的测验和考试。插件支持多种问题类型,包括单选框(MCQ)、复选框(MCQ)、下拉列表(MCQ)、文本、短文本、数字、日期等。还支持横幅(HTML)显示信息性消息、填空题…

LONGAGENT:优化大模型处理长文本

现有的大模型&#xff08;LLMs&#xff09;&#xff0c;尽管在语言理解和复杂推理任务上取得了显著进展&#xff0c;但在处理这些超长文本时却常常力不从心。它们在面对超过10万令牌的文本输入时&#xff0c;常常会出现性能严重下降的问题&#xff0c;这被称为“中间丢失”现象…

Docker基本使用和认识

目录 基本使用 镜像仓库 镜像操作 Docker 如何实现镜像 1) namespace 2) cgroup 3) LXC Docker常见的网络类型 bridge网络如何实现 基本使用 镜像仓库 镜像仓库登录 1)docker login 后面不指定IP地址&#xff0c;则默认登录到 docker hub 上 退出 2)docker logo…

互联网直播/点播技术与平台创新应用:视频推拉流EasyDSS案例分析

随着互联网技术的快速发展&#xff0c;直播/点播平台已成为信息传播和娱乐的重要载体。特别是在电视购物领域&#xff0c;互联网直播/点播平台与技术的应用&#xff0c;不仅为用户带来了全新的购物体验&#xff0c;也为商家提供了更广阔的营销渠道。传统媒体再一次切实感受到了…

嵌入式Linux系统编程 — 4.7 regcomp、regexec、regfree正则表达式函数

目录 1 为什么需要正则表达式 2 正则表达式简介 3 正则表达式规则 4 regcomp、regexec、regfree函数 4.1 函数介绍 4.2 URL格式案例 1 为什么需要正则表达式 在许多的应用程序当中&#xff0c; 有这样的应用场景&#xff1a; 给定一个字符串&#xff0c;检查该字符串是否…

【小学期】常用基于Swing的七个静态界面

示例1&#xff1a;基本的带按钮和标签的界面 import javax.swing.*; import java.awt.*;public class SimpleSwingApp1 {public static void main(String[] args) {JFrame frame new JFrame("Simple Swing App 1");frame.setDefaultCloseOperation(JFrame.EXIT_ON_C…

5个大气的wordpress付费主题

Sesko赛斯科wordpress外贸主题 适合用于重型机械设备公司建外贸官方网站的橙红色wordpress外贸主题。 https://www.jianzhanpress.com/?p5886 Polar钋啦wordpress外贸主题 制造业wordpress网站模板&#xff0c;适合生产制造企业官方网站使用的wordpress外贸主题。 https:/…

识图生成代码:通义千问vsGPt4o,有点小崩

今日对比一下通义千问和GPt4o&#xff0c;在通过识别图片然后去生成前端代码 在当今ai的时代&#xff0c;通过ai去生成页面的代码可以很大的提高我们的开发效率下面是我们要求的生成的图片截图&#xff0c;这是掘金的榜单 效果对比 首先我们使用通义千问&#xff0c;让他去帮我…

学校消防设施设备管理系统

建立和落实校园消防安全管理责任制,做到消防安全工作有人专管,部门和岗位有人落实的日常管理&#xff0c;及时发现消防安全隐患,及时反映,及时处理,杜绝校园内消防安全隐患。 凡尔码平台搭建学校消防设施设备管理系统可以通过设备管理系统对消防器材设施基本信息、设施有效期、…

[leetcode]avoid-flood-in-the-city 避免洪水泛滥

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:vector<int> avoidFlood(vector<int>& rains) {vector<int> ans(rains.size(), 1);set<int> st;unordered_map<int, int> mp;for (int i 0; i < rains.size(); i) {i…

运维锅总详解HAProxy

本文尝试从HAProxy简介、HAProxy工作流程及其与Nginx的对比对其进行详细分析&#xff1b;在本文最后&#xff0c;给出了为什么Nginx比HAProxy更受欢迎的原因。希望对您有所帮助&#xff01; HAProxy简介 HAProxy&#xff08;High Availability Proxy&#xff09;是一款广泛使…

Springboot 整合 DolphinScheduler(二):UI页面上的主要功能介绍

&#x1f4cd;当前部署情况&#xff1a;DolphinScheduler V2.0.6 已经在三台服务器上安装完毕&#xff0c;具体如下&#xff1a; 角色 服务器IP master 192.168.1.247 master 192.168.1.248 worker 192.168.1.249 &#x1f4c2; 具体搭建过程&#xff1a;Springboot 整…

绕过命令过滤器:探索UnixLinux中的Bypass技术

前言 在Unix或Linux系统的安全测试和网络防御中&#xff0c;了解如何绕过命令过滤器是非常重要的。今天&#xff0c;我们将探讨几种利用shell命令绕过安全限制的技巧&#xff0c;这些技巧常用于渗透测试中&#xff0c;以检测系统的安全漏洞。 0x00 命令介绍 一般而言&#x…

ros1仿真导航机器人 hector_mapping gmapping

仅为学习记录和一些自己的思考&#xff0c;不具有参考意义。 1 hector_mapping 建图过程 &#xff08;1&#xff09;gazebo仿真 roslaunch why_simulation why_slam.launch <launch><!-- We resume the logic in empty_world.launch, changing only the name of t…

算法-位运算基础

文章目录 前置知识1. 交换两个数2. 比较两个数的大小3. leetcode268 寻找缺失的数字4. leetcode136 只出现一次的数字5. leetcode260 只出现一次的数字|||6. leetcode137 只出现一次的数字||7. 2/3的幂8. 大于等于该数字的最小2的幂9. leetcode201 数字范围按位与10. 位运算中分…