算法思想总结:优先级队列

一、最后一块石头的重量

. - 力扣(LeetCode)

        我们每次都要快速找到前两个最大的石头进行抵消,这个时候用优先级队列(建大堆),不断取堆顶元素是最好的!每次删除堆顶元素后,可以自动调整,时间复杂度是logN。

class Solution {
public:int lastStoneWeight(vector<int>& stones) {//建立优先级队列  大堆priority_queue<int> heap;for(auto&num:stones) heap.push(num);while(heap.size()>1){int x=heap.top();heap.pop();int y=heap.top();heap.pop();if(x>y) heap.push(x-y); }return heap.size()?heap.top():0;//不为空,就返回堆顶元素,为空,就返回0}
};

二、数据流中的第K大元素

. - 力扣(LeetCode)

(1)在学习分治专题的时候,我们知道topK问题可以用优先级队列去解决也可以用快速排序的三路划分去解决,并且快速排序反而会更优秀一点,那优先级队列的优势究竟体现在哪里呢??其优势体现在可以不断地去取用堆顶元素或者是加入元素的时候都可以通过用logN的时间复杂度进行调整,而前期建堆也仅仅是N*logN的时间复杂度,而快速排序的三路划分则是一次性的N的时间复杂度,所以长期优先级队列收益高,短期收益快速排序的三路划分收益高。

class KthLargest {priority_queue<int,vector<int>,greater<int>> heap;//仿函数int k;   //创建一个大小为k的小根堆 堆顶始终是第k大的元素//用快速排序算法可以是O(N)的复杂度,但是如果是要频繁去获取,就很显然得依靠优先级队列
public:KthLargest(int _k, vector<int>& nums) {k=_k; for(auto &val:nums) {heap.push(val);if(heap.size()>k) heap.pop();//入堆的同时进行向上调整}}int add(int val) {heap.push(val);if(heap.size()>k)heap.pop();//可能我插入的时候堆里啥也没有return heap.top();}
};

 三、数据的中位数

. - 力扣(LeetCode)

策略1:存在数组中用sort去排序  —— add(NlogN)  find(1) 

策略2:还是存在数组中,利用插入排序的思想,因为插入之间就已经是有序的了,所以新元素插入时的时间复杂度是插入排序的最好情况O(N)   ——add(N)   find(1)

策略3:优先级队列大小堆维护中位数   add(logN)  find(1)

设计思路:

1、建立left为大根堆,right为小根堆

2、我们的add控制始终保持left的数量要么和right相等,要么比right多一个,为了能够满足在O(1)的复杂度内完成找到中位数的任务,我们希望当left多一个的时候,left堆顶的元素就是中位数,而当left和right相等的时候,中位数就是两个堆的堆顶元素的平均值。

3、为了达到这个目的,我们在时刻控制left和right的数量的同时,一定要保证left里面的元素是小于等于right里面的元素的,所以add要分两种情况去讨论:

情况1:当两个堆的元素个数相等的时候

    (1)如果left为空,或者是add的元素比left的堆顶元素小,那么就让该元素直接进left

    (2)如果add的元素比left的堆顶元素大,那么他也有可能会比right的元素大,所以我们必须要将这个元素丢到right中,但是直接丢就会破坏规则,所以我们要先将add的元素丢到right中进行调整,然后再将right的堆顶元素丢到left中去,保持left和right的数量关系。 (注意,这里的先后顺序很重要,我们不能先将right的堆顶元素丢到left中,然后再将add丢到right中进行调整,因为我们只是知道这个数比left的堆顶元素大,但是他是比right的堆顶元素大还是小我们不得而知,必须要通过他自己的向下调整去选出来)

情况2:当left的元素比right多一个的时候

  (1)如果add的元素比left的堆顶元素大,这个时候无脑进右边就行了。

   (2)如果add的元素比left的堆顶元素小,这个时候我们也得把add的元素丢到left中,然后为了保持数量关系,将调整过后的left的堆顶元素移到right中即可。

细节处理:

1、我们在比较的时候始终实用left的元素进行比较,因为左边不为空的时候右边也可能为空,所以我们如果不用left去比较而是用right去比较,那么还需要多考虑一种边界情况。

2、虽然我们add的都是int类型,但是当两个堆的元素个数相同的时候,我们去取两个堆顶元素取平均值的,而平均值是有可能会出现小数的,所以如果我们还用int的话可能会造成小数点丢失,所以我们在/2的时候变成/2.0,这样结果就会被强转成double;

class MedianFinder {
public:MedianFinder() {} //默认初始化不管了void addNum(int num) {//分类讨论 m==n或者m==n+1size_t m=left.size(),n=right.size();if(m==n) //m==n->m==n+1{//如果我比左边的堆顶小,或者是为空,我就进左边if(m==0||num<=left.top()) left.push(num);else //如果我比堆顶大,那我要进右边,然后把右边的移过来{right.push(num);left.push(right.top());right.pop();}}else // m==n+1 ->m==n{//如果我比左边的小,直接进右边即可if(num <= left.top()) {left.push(num);right.push(left.top());left.pop(); }else //如果我比左边的大 无脑进右边 right.push(num);}}double findMedian() { //我们的策略是 m==n 返回堆顶平均值  如果m==n+1 返回左边的堆顶if(left.size()>right.size()) return left.top();else return (left.top()+right.top())/2.0;}private:priority_queue<int> left;//左边是大根堆priority_queue<int,vector<int>,greater<int>> right;///右边是小根堆
};

四、 前K个高频词汇

. - 力扣(LeetCode)

该题是一道非常经典的OJ题,在哈希表章节中介绍了四种解法,运用stl中的不同容器去解决。

算法思想总结:哈希表-CSDN博客

class Solution {
public:typedef pair<string,int> PSI;struct compare//要注意仿函数要+const修饰,否则可能编译不过{bool operator()(const PSI&kv1,const PSI&kv2) const{if(kv1.second==kv2.second) return kv1.first<kv2.first;return kv1.second>kv2.second;}};vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string,int> countmap;//计数for(auto&s:words) ++countmap[s];//丢到优先级队列里priority_queue<PSI,vector<PSI>,compare> heap;for (auto& it : countmap) {heap.push(it);if (heap.size() > k) heap.pop();}vector<string> ret(k);for(int i=k-1;i>=0;--i) {ret[i]=heap.top().first;heap.pop();}return ret;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/368977.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[C++][CMake][CMake基础]详细讲解

目录 1.CMake简介2.大小写&#xff1f;3.注释1.注释行2.注释块 4.日志 1.CMake简介 CMake是一个项目构建工具&#xff0c;并且是跨平台的 问题 – 解决 如果自己动手写Makefile&#xff0c;会发现&#xff0c;Makefile通常依赖于当前的编译平台&#xff0c;而且编写Makefile的…

【动态规划】动态规划一

动态规划一 1.第 N 个泰波那契数2.面试题 08.01. 三步问题3.使用最小花费爬楼梯4.解码方法 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#x1f603; 1.…

分布式限流:Spring Cloud Gateway 限流

分布式限流&#xff1a;Spring Cloud Gateway 限流 在现代微服务架构中&#xff0c;流量控制是一个至关重要的部分。分布式限流作为一种有效的流量控制手段&#xff0c;能够帮助我们保护系统不被突发的流量冲垮。Spring Cloud Gateway支持多种限流方式。 什么是分布式限流 分…

模拟5亿年自然进化史,全新蛋白质大模型ESM3诞生!前Meta老将力作LeCun转赞

模拟5亿年自然进化史&#xff0c;全新蛋白质大模型ESM3诞生&#xff01;前Meta老将力作LeCun转赞。 能抗衡AlphaFold 3的生命科学大模型终于出现了。初创公司Evolutionary Scale AI发布了他们最新的98B参数蛋白质语言模型ESM3。不仅支持序列、结构、功能的all-to-all推理&#…

Unreal Engine@Jetson Orin Nano尚不支持

Unreal EngineJetson Orin Nano尚不支持 1. 源由2. Unreal Engine介绍3. 问题4. 编译方法5. 补充6. 其他 1. 源由 最近在看SC-Explorer方面的内容&#xff0c;在模拟方面采用了Unreal Engine。 本打算跑下模拟&#xff0c;因此打算在JetsonOrin的板子上试试看。 2. Unreal En…

opencv实现目标检测功能----20240704

早在 2017 年 8 月,OpenCV 3.3 正式发布,带来了高度改进的“深度神经网络”(dnn)模块。 该模块支持多种深度学习框架,包括 Caffe、TensorFlow 和 Torch/PyTorch。这次我们使用Opencv深度学习的功能实现目标检测的功能,模型选用MobileNetSSD_deploy.caffemodel。 模型加载…

mac视频压缩简单办法,mac如何把视频压缩到指定大小内存

在数字时代&#xff0c;视频已成为我们日常生活和工作的重要交流工具。然而&#xff0c;视频文件体积庞大&#xff0c;给存储和分享带来了不少困扰。本文将为你揭秘视频压缩的秘密&#xff0c;让你轻松减小视频文件体积&#xff0c;提升分享效率&#xff01; 方法一下载文件压缩…

Python爬虫教程第0篇-写在前面

为什么写这个系列 最近开发了个Python爬虫的脚本&#xff0c;去抢一个名额&#xff0c;结果是程序失败了&#xff0c;中间有各种原因&#xff0c;终究还是准备不足的问题。我想失败的经验或许也可贵&#xff0c;便总结一下当初从0开始学Python&#xff0c;一步步去写Python脚本…

【SpringCloud】Ribbon源码解析

ribbon是一个负载均衡组件&#xff0c;它可以将请求分散到多个服务提供者实例中&#xff0c;提高系统的性能和可用性。本章分析ribbon是如何实现负载均衡的 1、LoadBalanced 消费者在引入ribbon组件后&#xff0c;给http客户端添加LoadBalanced注解就可以启用负载均衡功能。Lo…

Github 2024-07-01开源项目月报 Top15

根据Github Trendings的统计,本月(2024-07-01统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目6JavaScript项目3C++项目2PHP项目1Blade项目1非开发语言项目1C#项目1Lua项目1Go项目1MDX项目1Jupyter Notebook项目1从零开始构建你喜…

Ubuntu 24.04-自动安装-Nvidia驱动

教程 但在安全启动模式下可能会报错。 先在Nvidia官网找到GPU对应的驱动版&#xff0c; 1. 在软件与更新中选择合适的驱动 2. ubuntu自动安装驱动 sudo ubuntu-drivers autoinstall显示驱动 ubuntu-drivers devices3. 安装你想要的驱动 sudo apt install nvidia-driver-ve…

99. 岛屿数量

题目描述&#xff1a;给定一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的矩阵&#xff0c;你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成&#xff0c;并且四周都是水域。你可以假设矩阵外均被水包围。 输入描述&#xff1a…

@amap/amap-jsapi-loader实现高德地图嵌入React项目中,并且做到点击地图任意一处,获得它的经纬度

1.第一步要加入项目package.json中或者直接yarn install它都可以 想必大家应该都会 "amap/amap-jsapi-loader": "0.0.7"2.加入项目中 关于接口获取key的接口 大家改成自己对应的项目请求方法 import React, { PureComponent } from react; import { Input…

GEE计算遥感生态指数RSEI

目录 RESI湿度绿度热度干度源代码归一化函数代码解释整体的代码功能解释:导出RSEI计算结果参考文献RESI RSEI = f (Greenness,Wetness,Heat,Dryness)其遥感定义为: RSEI = f (VI,Wet,LST,SI)式中:Greenness 为绿度;Wetness 为湿度;Thermal为热度;Dryness 为干度;VI 为植被指数…

【CT】LeetCode手撕—4. 寻找两个正序数组的中位数

目录 题目1- 思路2- 实现⭐4. 寻找两个正序数组的中位数——题解思路 3- ACM 实现 题目 原题连接&#xff1a;4. 寻找两个正序数组的中位数 1- 思路 思路 将寻找中位数 ——> 寻找两个合并数组的第 K 大 &#xff08;K代表中位数&#xff09; 实现 ① 遍历两个数组 &am…

如何利用AI撰写短文案获客?分享6大平台和3大步骤!

从去年开始&#xff0c;很多大厂都在裁员&#xff0c;原因就是因为AI的火爆&#xff0c;替代了很多机械式的劳动力。以前很多人可以通过机械式的工作来摸鱼&#xff0c;现在AI完成的效率比人工的要高很多倍。 国内好用的AI平台非常多&#xff0c;有时候也可以使用几个AI平台结合…

如何提高内容生产效率

在当前数字化和信息爆炸的时代&#xff0c;内容生产的需求不断增加&#xff0c;如何提高内容生产效率成为企业面临的重要课题。本文将介绍一种有效的内容生产协同工具——【可瓜】&#xff0c;并详细探讨其在提高内容生产效率方面的优势和实际应用。 内容生产任务进度追踪 传统…

【BUUCTF-PWN】7-[第五空间2019 决赛]PWN5

参考&#xff1a;BUU pwn [第五空间2019 决赛]PWN5 //格式化字符串漏洞 - Nemuzuki - 博客园 (cnblogs.com) 格式化字符串漏洞原理详解_printf 任意内存读取-CSDN博客 32位小端排序&#xff0c;有栈溢出保护 运行效果&#xff1a; 查看main函数 存在格式化字符串漏洞 输…

基于iview.viewUI实现行合并(无限制/有限制合并)【已验证可正常运行】

1.基于iview.viewUI实现行合并&#xff08;列之间没有所属对应关系&#xff0c;正常合并&#xff09; 注&#xff1a;以下代码来自于GPT4o&#xff1a;国内直连GPT4o 只需要修改以下要合并的列字段&#xff0c;就可以方便使用啦 mergeFields: [majorNo, devNam, overhaulAdvic…

嵌入式Linux系统编程 — 6.7 实时信号

目录 1 什么是实时信号 2 sigqueue函数 3 sigpending()函数 1 什么是实时信号 等待信号集只是一个掩码&#xff0c;它并不追踪信号的发生次数。这意味着&#xff0c;如果相同的信号在被阻塞的状态下多次产生&#xff0c;它只会在信号集中被记录一次&#xff0c;并且在信号集…