【C++航海王:追寻罗杰的编程之路】关联式容器的底层结构——AVL树

目录

1 -> 底层结构

2 -> AVL树

2.1 -> AVL树的概念

2.2 -> AVL树节点的定义

2.3 -> AVL树的插入

2.4 -> AVL树的旋转

2.5 -> AVL树的验证

2.6 -> AVL树的性能


1 -> 底层结构

在上文中对对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中
插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

2 -> AVL树

2.1 -> AVL树的概念

二叉搜索树虽然可以缩短查找的效率,但如果数据有序或者接近有序的二叉搜索树将退化成单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树的高度差的绝对值不超过1(需要对树中的节点进行调整),即可降低树的高度,从而减少平均搜索的长度。

一棵AVL树或者空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个节点,其高度可保持在O(n),搜索时间复杂度O(n)。

2.2 -> AVL树节点的定义

AVL树节点的定义:

#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;				  // 该节点的平衡因子
};

2.3 -> AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点。
  2. 调整节点的平衡因子。
#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;				  // 该节点的平衡因子bool Insert(const T& data){// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,//	  此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent// 为根的树进行旋转处理if (2 == pParent->_bf){// ...}else{// ...}}}return true;}};

2.4 -> AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧——左左:右单旋

#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;				  // 该节点的平衡因子bool Insert(const T& data){// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,//	  此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent// 为根的树进行旋转处理if (2 == pParent->_bf){// ...}else{// ...}}}return true;}/*在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:1. 30节点的右孩子可能存在,也可能不存在2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点如果是子树,可能是某个节点的左子树,也可能是右子树*/void _RotateR(PNode pParent){// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if (pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if (NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;}
};

2. 新节点插入较高右子树的右侧——右右:左单旋

实现参考右单旋。

3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;				  // 该节点的平衡因子bool Insert(const T& data){// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,//	  此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent// 为根的树进行旋转处理if (2 == pParent->_bf){// ...}else{// ...}}}return true;}//1. 新节点插入较高左子树的左侧——左左:右单旋/*在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:1. 30节点的右孩子可能存在,也可能不存在2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点如果是子树,可能是某个节点的左子树,也可能是右子树*/void _RotateR(PNode pParent){// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if (pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if (NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;}//3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整void _RotateLR(PNode pParent){PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if (1 == bf)pSubL->_bf = -1;else if (-1 == bf)pParent->_bf = 1;}};

4. 新节点插入较高右子树的左侧——右左:先右单旋再左单旋

参考左右双旋。

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分为以下情况考虑:

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR。

  • 当pSubR的平衡因子为1时,执行左单旋。
  • 当pSubR的平衡因子为-1时,执行右左单旋。

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL。

  • 当pSubL的平衡因子为-1时,执行右单旋。
  • 当pSubL的平衡因子为1时,执行左右单旋。

旋转完成后,原pParent为根的子树高度降低,已经平衡,不需要再向上更新。

2.5 -> AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分为两步:

1. 验证其为二叉搜索树

        如果中序遍历可以得到一个有序的序列,就说明其为二叉搜索树。

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)。
  • 节点的平衡因子是否计算正确。
#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;				  // 该节点的平衡因子bool Insert(const T& data){// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,//	  此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent// 为根的树进行旋转处理if (2 == pParent->_bf){// ...}else{// ...}}}return true;}//1. 新节点插入较高左子树的左侧——左左:右单旋/*在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:1. 30节点的右孩子可能存在,也可能不存在2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点如果是子树,可能是某个节点的左子树,也可能是右子树*/void _RotateR(PNode pParent){// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if (pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if (NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;}//3. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整void _RotateLR(PNode pParent){PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if (1 == bf)pSubL->_bf = -1;else if (-1 == bf)pParent->_bf = 1;}//验证是否为AVL树int _Height(PNode pRoot);bool _IsBalanceTree(PNode pRoot){// 空树也是AVL树if (nullptr == pRoot) return true;// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(pRoot->_pLeft);int rightHeight = _Height(pRoot->_pRight);int diff = rightHeight - leftHeight;// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者// pRoot平衡因子的绝对值超过1,则一定不是AVL树if (diff != pRoot->_bf || (diff > 1 || diff < -1))return false;// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);}};

2.6 -> AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(n)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树。


感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/369424.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【遇坑笔记】Node.js 开发环境与配置 Visual Studio Code

【遇坑笔记】Node.js 开发环境与配置 Visual Studio Code 前言node.js开发环境配置解决pnpm 不是内部或外部命令的问题&#xff08;pnpm安装教程&#xff09;解决 pnpm : 无法加载文件 C:\Program Files\nodejs\pnpm.ps1&#xff0c;因为在此系统上禁止运行脚本。 vscode 插件开…

爆!Java高级特性之Stream API详解

爆&#xff01;Java高级特性之Stream API详解 Java 8引入的Stream API可以说是一个革命性的特性,让我们告别了又臭又长的for循环,迎来了函数式编程的春天。今天就让我们来一起深入了解这个让人又爱又恨的Stream API吧! 什么是Stream? Stream就像一个高级的迭代器,允许我们以…

Git代码提交流程

1. 核心流程 2. 完成流程

JVM原理(二):JVM之HotSpot虚拟机中对象的创建寻位与定位整体流程

1. 对象的创建 遇到new指令时 当Java虚拟机遇到一个字节码new指令时。 首先会去检查这个指令的参数是否能在常量池中定位到一个类的符号引用&#xff0c;并且检查这个符号引用代表的类是否被加载、解析和初始化过。 如果没有&#xff0c;那么必须执行类的加载过程(加载、检查…

c++之旅第十一弹——顺序表

大家好啊&#xff0c;这里是c之旅第十一弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 一,数据结构…

【力扣】赎金信

&#x1f525;博客主页&#xff1a; 我要成为C领域大神&#x1f3a5;系列专栏&#xff1a;【C核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 ​ 给你两个字符串…

免杀笔记 ----> ShellCode Loader !!!

学了那么久的前置知识&#xff0c;终于到了能上线的地方了&#xff01;&#xff01;&#xff01; 不过这里还没到免杀的部分&#xff0c;距离bypass一众的杀毒软件还有很长的路要走&#xff01;&#xff01; 目录 1.ShellCode 2.ShellCode Loader的概念 3.可读可写可…

使用AES加密数据传输的iOS客户端实现方案

在现代应用开发中&#xff0c;确保数据传输的安全性是至关重要的。本文将介绍如何在iOS客户端中使用AES加密数据传输&#xff0c;并与服务器端保持加密解密的一致性。本文不会包含服务器端代码&#xff0c;但会解释其实现原理。 加密与解密的基本原理 AES&#xff08;Advance…

AIGI赋能未来:人工智能如何重塑电子电路学习体验

文章目录 一、掌握基础知识与技能1. 扎实理论基础2. 熟练使用工具 二、融合AI技术提升学习效率1. 利用AI辅助学习平台2. 应用AI工具进行电路设计与仿真 三、探索创新应用方向1. 关注AI与电子电路的交叉领域2. 参与开源项目和竞赛 四、培养跨学科思维1. 加强数学与计算机科学知识…

比Proxmox VE更易用的免费虚拟化平台

之前虚拟化一直玩Proxmox VE&#xff0c;最近发现一个更易用的虚拟化软件CSYun&#xff0c;他与Proxmox VE类似&#xff0c;都是一个服务器虚拟化平台。它不像VMware ESXi那么复杂&#xff0c;对于个人使用者和中小企业是一个比较好的选择。 这个软件所在的网址为&#xff1a;…

(一)Docker基本介绍

部署项目的发展 传统部署适合需要最大性能和可靠性的场景&#xff0c;但在资源利用和管理方面有显著劣势。虚拟化部署提供了良好的资源利用率和隔离性&#xff0c;适用于需要灵活扩展和多租户环境的场景&#xff0c;但存在性能开销。容器部署在轻量级、可移植性和资源利用率方面…

[SAP ABAP] 子例程

子例程 示例1 主程序(Z437_TEST_2024) INCLUDE文件(Z437_TEST_2024_F01) 输出结果如下所示 示例2 主程序(Z437_TEST_2024) INCLUDE文件(Z437_TEST_2024_F01) 输出结果如下所示 补充扩展练习 主程序(Z437_TEST_2024) INCLUDE文件(Z437_TEST_2024_F01) 输出结果如下所示 提示…

深入理解【 String类】

目录 1、String类的重要性 2、常用方法 2、1 字符串构造 2、2 String对象的比较 2、3 字符串查找 2、4字符转换 数值和字符串转换&#xff1a; 大小写转化&#xff1a; 字符串转数组&#xff1a; 格式转化&#xff1a; 2、5 字符串替换 2、6字符串拆分 2、7 字符串…

vue项目创建+eslint+Prettier+git提交规范(commitizen+hooks+husk)

# 步骤 1、使用 vue-cli 创建项目 这一小节我们需要创建一个 vue3 的项目&#xff0c;而创建项目的方式依然是通过 vue-cli 进行创建。 不过这里有一点大家需要注意&#xff0c;因为我们需要使用最新的模板&#xff0c;所以请保证你的 vue-cli 的版本在 4.5.13 以上&#xff…

ELK日志系统和Filebeat采集器的学习总结

ELK是ElasticSerach、Logstash、Kina Logstash负责采集数据&#xff0c;Logstash有三个插件&#xff0c;input、filter、output&#xff0c;filter插件作用是对采集的数据进行处理&#xff0c;过滤的&#xff0c;因此filter插件可以选&#xff0c;可以不用配置。 ElasticSear…

Android super.img结构及解包和重新组包

Android super.img结构及解包和重新组包 从Android10版本开始&#xff0c;Android系统使用动态分区&#xff0c;system、vendor、 odm等都包含在super.img里面&#xff0c;编译后的最终镜像不再有这些单独的 image&#xff0c;取而代之的是一个总的 super.img. 1. 基础知识 …

npm安装依赖报错——npm ERR gyp verb cli的解决方法

1. 问题描述 1.1 npm安装依赖报错——npm ERR! gyp verb cli npm MARN deprecated axiosQ0.18.1: critical security vuLnerability fixed in v0.21.1. For more information, npm WARN deprecated svg001.3.2: This SVGO version is no Longer supported. upgrade to v2.x.x …

第二节:如何使用thymeleaf渲染html(自学Spring boot 3.x的第一天)

大家好&#xff0c;我是网创有方&#xff0c;今天来学习如何使用thymeleaf渲染html。该模板运用不广泛&#xff0c;所以本节内容了解既可。 第一步&#xff1a;创建html文件。 在模板templates目录下创建一个html文件。 编写代码如下&#xff1a; <!DOCTYPE html> <…

雷电模拟器报错remount of the / superblock failed: Permission denied remount failed

报错截图 解决方法 打开设置 设置配置system.vmdk可写入 解决

【MySQL】mysql访问

mysql访问 1.引入MySQL 客户端库2.C/C 进行增删改3.查询的处理细节4.图形化界面访问数据库4.1下载MYSQL Workbench4.2MYSQL Workbench远程连接数据库 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&a…