CIR-Net:用于 RGB-D 显著性目标检测的跨模态交互与优化(问题)

摘要

问题一:自模态注意力优化单元和跨模态加权优化单元什么意思?

1 优化中间件结构的作用

位置:位于编码器和解码器之间

输入:编码器提取的RGB特征,深度特征以及RGB-D特征。

输出:经过优化的RGB,深度,和RGB-D特征,这些特征被传递到解码器中进行进一步处理。

目的:通过优化中间件结构,模型能够更好地捕捉单模态和跨模态的特征信息,减少冗余,增强显著目标的判别性。

2 自模态注意力优化单元(smAR)

功能: smAR单元用于优化单模态特征(即RGB特征、深度特征和RGB-D特征),减少特征中的冗余信息,并强调空间和通道维度中的重要特征。

实现方式:

(1)通过**空间注意力(Spatial Attention, SA)通道注意力(Channel Attention, CA)**生成一个3D注意力张量。

(2)这个3D注意力张量用于对输入特征进行加权,从而突出重要区域并抑制背景噪声。

公式:

输出:经过优化的单模态特征 

3 跨模态加权优化单元(cmWR)

功能:cmWR单元用于进一步优化多模态特征,通过捕捉RGB、深度和RGB-D特征之间的全局上下文依赖关系,增强跨模态信息的互补性。

实现方式:

(1) 首先,将RGB、深度和RGB-D特征映射到一个统一的特征空间。

(2)然后,计算RGB和深度特征之间的相关性(M1​)以及RGB-D特征自身的相关性(M2​)。

(3)最后,通过加权融合这些相关性信息,生成跨模态的全局依赖权重,用于优化输入特征。

公式:

输出:经过优化的多模态特征 

4 整体流程

输入:编码器提取的RGB特征、深度特征和RGB-D特征。

步骤:

        (1)自模态优化:通过smAR单元对RGB、深度和RGB-D特征分别进行优化,减少冗余并突出重要信息。

        (2)跨模态优化:通过cmWR单元进一步优化多模态特征,捕捉RGB、深度和RGB-D特征之间的全局上下文依赖关系。

输出:优化后的RGB、深度和RGB-D特征,这些特征将被传递到解码器中进行显著目标预测。

一 介绍

二 有关工作

三 提出的方法

图3. 所提出的CIR-Net的概览图。从主干网络中提取的RGB特征和深度特征分别表示为,其中r和d分别代表RGB分支和深度分支,表示特征层级的索引。在特征编码器中,我们还使用渐进式注意力引导融合(PAI)单元来生成跨模态的RGB-D编码器特征。然后,将顶层的RGB、深度和RGB-D特征嵌入到由自模态注意力优化(smAR)单元和跨模态加权优化(cmWR)单元组成的优化中间件中,以自模态和跨模态的方式逐步优化多模态编码器特征。最后,RGB分支和解码器特征以及深度分支的解码器特征流入相应的RGB-D分支,以便在特征解码器阶段通过重要性门控融合(IGF)单元学习更全面的交互特征。请注意,所有三个分支都会输出一个相应的显著目标预测图,并且我们将RGB-D分支的输出作为最终结果。

一 整体结构

1 输入图像:左侧有多个输入图像,包括 ​RGB图像 和 ​深度图像。

2 处理模块:包括 ​Progressive Attention guided Integration (PAI) unitRefinement Middleware 和 ​Up-sampling operation 等模块。

3 输出图像:右侧展示了处理后的融合图像。

二 详细模块解释

1 输入图像:RGB图像:提供颜色和纹理信息。深度图像:提供几何结构信息。

2 Progressive Attention guided Integration (PAI) unit(渐进式注意力机制 )

(1)功能:逐步引导注意力集成,增强特征融合效果。

(2)操作:通过注意力机制,逐步融合RGB和深度特征。

(3)输出:生成融合后的特征图。

3 Refinement Middleware(中间件模块)

(1)Self-modality Attention Refinement (smAR)(自模态注意力精炼):对单一模态的特征进行优化,增强特征表示。

RGB 和 Depth 各自的分支 内部,smAR 模块通过注意力机制 增强自身模态的信息表达,去除不必要的噪声,提高模态内部的特征质量。

(2)​Cross-modality Weighting Refinement (cmWR)(跨模态加权精炼):对跨模态特征进行加权优化,增强模态间协同作用。

cmWR 进一步在 RGB 和 Depth 之间调整权重,增强有用的信息,削弱冗余信息,使两种模态的信息更加互补。

(3)Importance Gated Fusion (IGF)(重要性门控融合):通过重要性门控机制,动态融合RGB和深度特征。

4. Up-sampling operation(向上采样操作)

(1)功能:通过反卷积或插值上采样特征图,提升图像分辨率。

(2)操作:逐步将低分辨率特征图上采样为高分辨率特征图。

5. Skip-connection(跳跃连接)

(1)功能:通过跳跃连接将底层特征与高层特征结合,保留细节信息。

(2)作用:防止信息丢失,增强特征传递。

6. Spatial attention(空间注意力)

​(1)功能:通过空间注意力机制,增强重要区域的响应。

(2)作用:提升模型对显著区域的理解能力。

三 信息流动

输入图像:RGB图像和深度图像分别输入到系统中。

Progressive Attention guided Integration (PAI) unit:逐步融合RGB和深度特征,生成融合后的特征图。

Refinement Middleware:通过smAR、cmWR和IGF模块优化特征表示。

Up-sampling operation:逐步上采样特征图,提升图像分辨率。

Skip-connection 和 ​Spatial attention:通过跳跃连接和空间注意力机制,增强特征传递和注意力机制。

输出图像:生成处理后的融合图像。

四 总结

框架图的核心流程

  1. 输入图像:接收RGB图像和深度图像。
  2. Progressive Attention guided Integration (PAI) unit:逐步融合RGB和深度特征。
  3. Refinement Middleware:通过smAR、cmWR和IGF模块优化特征表示。
  4. Up-sampling operation:逐步上采样特征图,提升图像分辨率。
  5. Skip-connection 和 ​Spatial attention:增强特征传递和注意力机制。
  6. 输出图像:生成处理后的融合图像。

作用

  • 实现RGB和深度模态的高效特征融合。
  • 通过注意力机制和优化模块,提升特征表示质量。
  • 生成高质量的融合图像,用于后续任务(如显著性检测、目标检测)。

图4。在改进中间软件结构中,自模式注意力完善(SMAR)单元和交叉模式加权改进(CMWR)单元的插图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/36975.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux驱动开发基础(can)

目录 1.can的介绍 2.can的硬件连接 2.1 CPU自带can控制器 2.2 CPU没有can控制器 3.电气属性 4.can的特点 5.can协议 5.1 can的种类 5.2 数据帧 5.2.1 标准数据帧格式 5.3.1 扩展数据帧格式 5.3 遥控帧 5.4 错误帧 5.5 过载帧 5.6 帧间隔 5.7 位填充 5.8 位时…

【北京迅为】iTOP-RK3568开发板OpenHarmony系统南向驱动开发UART接口运作机制

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工…

【嵌入式学习】时钟 - 边缘触发锁存器

目录 ## 时钟 ## 带边缘触发的寄存器 ## 优化内存走线 ## 画16位的内存 ## 时钟 波特率:一分钟说几个字 clock统一计算机内部的节奏,clock频率越高cpu速度越快 触发:电压的突变;下降沿:高变低;上升沿…

Linux C/C++编程——线程

线程是允许应用程序并发执行多个任务的一种机制,线程参与系统调度。 系统调度的最小单元是线程、而并非进程。 线程包含在进程之中,是进程中的实际运行单位。一个线程指的是进程中一个单一顺序的控制流(或者说是执行路线、执行流)…

CAN通信转TCP/IP通信协议解析

背景:最近项目开发受限于开发版只有一路CAN口和多个CAN通信对象的帧ID一样,考虑采用转换模块将CAN通信转成TCP/IP通信,间接实现获取CAN报文数据的目的。 1. 转换模块协议 首先想到的是采购周立功他家的多路CAN通信转TCP/IP通信模块&#xf…

vue:组件的使用

Vue:组件的使用 1、什么是组件 1.1、传统方式开发的应用 一个网页通常包括三部分:结构(HTML)、样式(CSS)、交互(JavaScript)。在传统开发模式下,随着项目规模的增大&a…

强大的AI网站推荐(第一集)—— Devv AI

网站:Devv AI 号称:最懂程序员的新一代 AI 搜索引擎 博主评价:我的大学所有的代码都是使用它,极大地提升了我的学习和开发效率。 推荐指数:🌟🌟🌟🌟🌟&#x…

gradle-8.13

gradle-8.13 稍微看了下,基于Maven改造的 https://gradle.org/install/https://github.com/gradle/gradle-distributions/releaseshttps://github.com/gradle/gradle-distributions/releases/download/v8.13.0/gradle-8.13-all.zip https://github.com/gradle/gra…

网络安全——SpringBoot配置文件明文加密

XTHS:第一步、XTHS:第二步、XTHS:第三步、XTHS:第四步 !就可以实现了。(但是前提,你要先对你的文本进行加密,然后按照ENC(加密文本),放到配置文件中) 一、前言…

wsl2配置xv6全解(包括22.04Jammy)

文章目录 获取xv6源代码Ubuntu20.04 Version安装指令成功测试参考MIT2021年官方文档 24.04 Version安装指令成功测试参考MIT2024年官方文档 Ubuntu 22.04没有官方文档? 配置大体流程1. 卸载原本qemu(如果之前安装了)2. clone qemu官方源代码&…

【机器学习-分类算法】

比如将一张图片按尺寸识别分类为横向或者纵向两类就是二分类问题 设x轴为图像的宽、y轴为图像的高,那么把训练数据展现在图上就是这样的: 若增加更多的数据集有: 如果只用一条线将图中白色的点和黑色的点分开,那么: 分类的目的就是找到这条线,就可以根据点在线…

java项目之基于ssm的疫苗预约系统(源码+文档)

项目简介 疫苗预约系统实现了以下功能: 用户信息管理 负责管理系统用户的信息。 疫苗信息管理 负责管理疫苗的相关信息。 疫苗类型管理 负责管理不同种类疫苗的信息。 疫苗留言管理 负责管理用户关于疫苗的留言和反馈。 公告信息管理 负责发布和管理与疫苗相关…

游戏引擎学习第171天

回顾并计划今天的内容 昨天,我们在处理一项任务时暂停了,当时的目标非常清晰,但由于时间限制,我们将其分成了两个部分。我们首先完成了运行时部分,而今天要处理的是资产打包部分。这项任务涉及改进字体系统&#xff0…

跨平台RTSP高性能实时播放器实现思路

跨平台RTSP高性能实时播放器实现思路 目标:局域网100ms以内超低延迟 一、引言 现有播放器(如VLC)在RTSP实时播放场景中面临高延迟(通常数秒)和资源占用大的问题。本文提出一种跨平台解决方案,通过网络层…

Deepseek+飞书实现简历分析建议+面试题

步骤一:创建多维表格 点击云文档点击主页点击新建创建多维表格 步骤二:创建列 首先将多余的列进行删除 创建简历内容列,类型使用文本,目的是将简历内容复制进来 创建AI列:简历分析、简历建议、面试题 点击确定后&…

Linux基础开发工具--gdb的使用

目录 安装准备: 1. 背景 2. 开始使用 3. 做一个Linux第一个小程序-进度条 安装准备: 对于gdb的学习使用,为了方便大家学习,我建议大家先安装一个cgdb进行学习,这样方便观察操作与学习gdb。 用以下…

leetcode热题100道——两数之和

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。 你可以按任意顺序返回答案。 示例 1…

某公司制造业研发供应链生产数字化蓝图规划P140(140页PPT)(文末有下载方式)

详细资料请看本解读文章的最后内容。 资料解读:某公司制造业研发供应链生产数字化蓝图规划 在当今制造业数字化转型的浪潮中,企业信息化建设成为提升竞争力的关键。本资料围绕 XX 公司的信息化建设展开,涵盖业务战略、信息化路线图、各领域系…

【总结篇】java多线程,新建线程有几种写法,以及每种写法的优劣势

java多线程 新建线程有几种写法,以及每种写法的优劣势 [1/5]java多线程 新建线程有几种写法–继承Thread类以及他的优劣势[2/5]java多线程-新建线程有几种写法–实现Runnable接口以及他的优劣势[3/5]java多线程 新建线程有几种写法–实现Callable接口结合FutureTask使用以及他的…

GB9706.1-2020附件J绝缘路径参考

下图为GB9706.1-2020绝缘路径示例图,附件J。 MOOP:对操作者的防护措施 MOPP:对患者的防护措施 1、保护接地外壳,网电源及次级电路与外壳之间。 网电源-外壳:1MOOP 次级电路-外壳:1MOOP 2、未保护接地外壳&…