【matlab 路径规划】基于改进遗传粒子群算法的药店配送路径优化

一 背景介绍

本文分享的是一个基于订单合并的订单分配和路径规划联合优化,主要背景是骑手根据客户需求,从药店取药之后进行配送,配送的过程中考虑路径的长度、客户的服务时间窗、车辆的固定成本等要素,经过建模和优化得到最优的配送方案。

二 模型介绍

2.1基本假设

配送的具体流程和现实情况,建立的数学模型基于以下假设条件:
(1)O2O 药品零售平台旗下的各个门店能够满足已下单顾客的需求量,即不存在供不应
求的情况。
(2)已知消费者下单商品数量、地理位置及时间窗和每个消费者的需求量不会发生变化
(3)骑手在每个配送点服务时间恒定且相同,由于服务时间较短所以忽略不计。
(4)骑手从药店出发,中途不可返回药店取货,完成所有的配送任务后需要返回药店。
(5)在骑手对各配送点进行配送的过程中,不考虑交通堵塞、车辆故障、天气恶劣等突
发状况的影响。

2.2目标函数

在这里插入图片描述

2.3 约束条件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三 算法介绍

遗传算法是一种模拟自然进化过程的优化算法,用于解决优化问题。它模拟了生物进化的过程,通过对优良个体的选择、交叉和变异,逐步优化解的质量,最终找到最优解。

遗传算法的基本步骤包括:

  1. 初始化种群:随机生成一组初始解作为种群,通常采用随机数生成的方式。

  2. 适应度评价:根据问题的具体要求,采用适应度函数对每个个体进行评估,得到其适应度值。

  3. 选择操作:根据个体的适应度值,按照一定的选择概率选择优良个体作为父代,通常采用轮盘赌选择方法。

  4. 交叉操作:从选出的父代个体中选取一对个体,通过某种交叉方式生成新的个体。

  5. 变异操作:对新生成的个体进行一定的变异操作,改变其基因的值,增加种群的多样性。

  6. 更新种群:将新生成的个体加入到种群中,得到更新后的种群。

  7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满足要求的解。

  8. 返回最优解:返回种群中适应度最好的个体作为最优解。

遗传算法通过迭代优化的方式,不断改进解的质量,寻找到全局最优解或较好的局部最优解。它在解决复杂问题、搜索空间大的问题等方面具有很好的性能。

四 算例分析

算例1 本文使用30个节点的算例,1个配送节点 29个需求节点(分为三个优先级)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

车辆编号.1: 0 -> 7 -> 1 -> 12 -> 15 -> 24 -> 22 -> 11 -> 27 -> 26 -> 29 ->
25 -> 0 到达时间节点: 0 - 4.7 - 9.9 - 11.4 - 12.4 - 14.9 - 15.6 - 17.4 -
19.6 - 24 - 26.7 - 28.4 - 33.7 min 行驶距离: 8413.36 m, 总时间: 33.7 min; 行驶成本 (C1): 21.03, 惩罚成本 (C2): 50.88
------------------------------------------------------------- 车辆编号.2: 0 -> 8 -> 19 -> 0 到达时间节点: 0 - 7.9 - 10.2 - 19.7 min 行驶距离: 4931.47
m, 总时间: 19.7 min; 行驶成本 (C1): 12.33, 惩罚成本 (C2): 29.59
------------------------------------------------------------- 车辆编号.3: 0 -> 18 -> 13 -> 4 -> 5 -> 16 -> 28 -> 0 到达时间节点: 0 - 2.5 - 6 - 7.5 -
10.1 - 13.6 - 15.1 - 16.6 min 行驶距离: 4138.40 m, 总时间: 16.6 min; 行驶成本 (C1): 10.35, 惩罚成本 (C2): 29.81
------------------------------------------------------------- 车辆编号.4: 0 -> 10 -> 6 -> 9 -> 20 -> 0 到达时间节点: 0 - 5.9 - 10 - 12.4 - 15.5 -
20.1 min 行驶距离: 5020.18 m, 总时间: 20.1 min; 行驶成本 (C1): 12.55, 惩罚成本 (C2): 33.81
------------------------------------------------------------- 车辆编号.5: 0 -> 23 -> 17 -> 14 -> 21 -> 30 -> 0 到达时间节点: 0 - 6.2 - 7.2 - 8.2 -
11.8 - 20.5 - 22.8 min 行驶距离: 5695.44 m, 总时间: 22.8 min; 行驶成本 (C1): 14.24, 惩罚成本 (C2): 37.93
------------------------------------------------------------- 车辆编号.6: 0 -> 2 -> 3 -> 0 到达时间节点: 0 - 1.5 - 5.7 - 9.5 min 行驶距离: 2363.65 m,
总时间: 9.5 min; 行驶成本 (C1): 5.91, 惩罚成本 (C2): 14.18

算例2 本文使用10个节点的算例,1个配送节点 9个需求节点(分为三个优先级)

在这里插入图片描述
**

车辆编号.1: 0 -> 2 -> 3 -> 1 -> 5 -> 4 -> 7 -> 8 -> 9 -> 6 -> 0 到达时间节点:
0 - 1.5 - 5.7 - 13.8 - 15.3 - 16.9 - 18.5 - 22.1 - 27.2 - 29.5 - 32.4
min 行驶距离: 8090.30 m, 总时间: 32.4 min; 行驶成本 (C1): 20.23, 惩罚成本 (C2):
54.26

**

六 项目分享

部分源码

clc
clear
close all
tic % 保存当前时间dataloader
%% 初始化问题参数
CustomerNum = size(Position, 1) - 1; % 需求点个数%% 需求点绘图
figure
hold on
xx = Position(:, 1);
yy = Position(:, 2);
idx1 = find(order_priority == 1);
idx2 = find(order_priority == 2);
idx3 = find(order_priority == 3);
scatter(xx(idx1), yy(idx1), 25, 'filled', 'go', 'DisplayName', '第一优先级')
scatter(xx(idx2), yy(idx2), 25, 'filled', 'bo', 'DisplayName', '第二优先级')
scatter(xx(idx3), yy(idx3), 25, 'filled', 'yo', 'DisplayName', '第三优先级')
scatter(xx(1), yy(1), 200, 'filled', 'rp', 'DisplayName', '药店')
legend
title('需求点散点图')%% 初始化算法参数
NIND = 1000; % 粒子数量
MAXGEN = 100; % 最大迭代次数
mutation_prob = 0.05; % 变异概率
crossover_prob = 0.8; % 交叉概率
tournament_size = 5; % 锦标赛规模%% 为预分配内存而初始化的0矩阵
Population = zeros(NIND, CustomerNum * 2 + 1); % 预分配内存,用于存储种群数据
PopDistance = zeros(NIND, 1); % 预分配矩阵内存
GbestDisByGen = zeros(MAXGEN, 1); % 预分配矩阵内存penalty_costs = zeros(NIND, 1);
travel_costs = zeros(NIND, 1);
vehicle_costs = zeros(NIND, 1);
total_distances = zeros(NIND, 1);
penalty_orders = cell(NIND, 1);for i = 1:NIND%% 初始化各粒子Population(i, :) = InitPop(CustomerNum, Distance, setting); % 使用GRASP算法生成TSP路径%% 计算路径长度PopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度
end
%% 存储Pbest数据
Pbest = Population; % 初始化Pbest为当前粒子集合
PbestDistance = PopDistance; % 初始化Pbest的目标函数值为当前粒子集合的目标函数值%% 存储Gbest数据
[mindis, index] = min(PbestDistance); % 获得Pbest中
Gbest = Pbest(index, :); % 初始Gbest粒子
GbestDistance = mindis; % 初始Gbest粒子的目标函数值%% 开始迭代
gen = 1;while gen <= MAXGEN%% 选择算子(锦标赛选择)new_population = zeros(size(Population));for i = 1:NINDnew_population(i, :) = Selection(Population, PopDistance, tournament_size); % 锦标赛选择endPopulation = new_population;%% 每个粒子更新for i = 1:NIND%% 粒子与Pbest交叉if rand < crossover_probPopulation(i, 2:end-1) = Crossover(Population(i, 2:end-1), Pbest(i, 2:end-1)); % 交叉end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 根据Pbest更新Gbest[mindis, index] = min(PbestDistance); % 找出Pbest中最短距离if mindis < GbestDistance % 若Pbest中最短距离小于Gbest距离Gbest = Pbest(index, :); % 更新GbestGbestDistance = mindis; % 更新Gbest距离end%% 粒子与Gbest交叉if rand < crossover_probPopulation(i, 2:end-1) = Crossover(Population(i, 2:end-1), Gbest(2:end-1));end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 粒子自身变异if rand < mutation_probPopulation(i, :) = Mutate(Population(i, :), Distance); % 传递Distance矩阵end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 根据Pbest更新Gbest[mindis, index] = min(PbestDistance); % 找出Pbest中最短距离if mindis < GbestDistance % 若Pbest中最短距离小于Gbest距离Gbest = Pbest(index, :); % 更新GbestGbestDistance = mindis; % 更新Gbest距离endend%% 显示此代信息fprintf('迭代次数 = %d, 最小成本 = %.2f   \n', gen, GbestDistance)%% 存储此代最短距离GbestDisByGen(gen) = GbestDistance;%% 更新迭代次数gen = gen + 1;
end% 删去路径中多余1
for i = 1:length(Gbest) - 1if Gbest(i) == Gbest(i + 1)Gbest(i) = 0; % 相邻位都为1时前一个置零end
end
Gbest(Gbest == 0) = []; % 删去多余零元素Gbest = Gbest - 1; % 编码各减1,与文中的编码一致%% 计算结果数据输出到命令行
disp('-------------------------------------------------------------')
toc % 显示运行时间
TextOutput(Gbest, Distance, TimeWindow, setting); % 显示最优路径
disp('-------------------------------------------------------------')%% 迭代图
figure
plot(GbestDisByGen, 'LineWidth', 2) % 展示目标函数值历史变化
xlim([1 gen - 1]) % 设置 x 坐标轴范围
set(gca, 'LineWidth', 1)
xlabel('迭代次数')
ylabel('最小成本')
title('遗传粒子群迭代曲线图')%% 绘制实际路线
DrawPath(Gbest, Position, idx1, idx2, idx3)

本项目是典型的考虑车辆容量,车辆行驶距离,客户时间窗的车辆路径规划问题。使用了性能相对较好的遗传粒子群算法(GAPSO),代码使用模块化编程,主函数框架相对固定,能够兼容不同类型的优化模型。
需要完整项目源码或者需要定制项目的朋友欢迎咨询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/371735.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 网络编程实战

一.获取主机的网络信息 需要添加network模块 QT core gui network主要涉及的类分析 QHostInfo类 QHostInfo::localHostName() 获取本地的主机名QHostInfo::fromName(const QString &) 获取指定主机的主机信息 addresses接口 QNetworkInterface类 QNetworkInterfac…

小试牛刀-区块链代币锁仓(Web页面)

Welcome to Code Blocks blog 本篇文章主要介绍了 [区跨链代币锁仓(Web页面)] ❤博主广交技术好友&#xff0c;喜欢我的文章的可以关注一下❤ 目录 1.编写目的 2.开发环境 3.实现功能 4.代码实现 4.1 必要文件 4.1.1 ABI Json文件(LockerContractABI.json) 4.2 代码详解…

挑战杯 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介 今天学长向大家介绍LSTM基础 基于LSTM的预测算法 - 股票预测 天气预测 房价预测 这是一个较为新颖的竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/postgraduate 1 基于 Ke…

7月8号直播预告 | 全国产EtherCAT运动控制器ZMC432HG及其EtherCAT驱动器与控制器常用回零模式介绍

EtherCAT运动控制边缘控制器是工业互联网的关键组件之一&#xff0c;结合丰富的运动控制功能、实时数据采集、处理和本地计算等&#xff0c;具备高度灵活的可编程性和出色的运动控制性能&#xff0c;为运动控制协同工业互联网应用带来巨大市场潜力&#xff0c;同时也使其成为企…

简单实现联系表单Contact Form自动发送邮件

如何实现简单Contact Form自动邮件功能&#xff1f;怎样简单设置&#xff1f; 联系表单不仅是访客与网站所有者沟通的桥梁&#xff0c;还可以收集潜在客户的信息&#xff0c;从而推动业务的发展。AokSend将介绍如何简单实现一个联系表单&#xff0c;自动发送邮件的过程&#x…

VPN 的入门介绍

VPN&#xff08;虚拟专用网络&#xff09; 简介 虚拟专用网络&#xff0c;简称虚拟专网&#xff08;VPN&#xff09;&#xff0c;其主要功能是在公用网络上建立专用网络&#xff0c;进行加密通讯。在企业网络中有广泛应用。VPN网关通过对数据包的加密和数据包目标地址的转换实…

【Linux开发实战指南】基于UDP协议的即时聊天室:快速构建登陆、聊天与退出功能

author: bbxwg system_version: Ubuntu 22.04 Time : 2024-07-04 目录 技术简单讲解&#xff1a; UDP (User Datagram Protocol) 链表 父子进程 信号 基于UDP的即时聊天室系统&#xff1a;客户端与服务器端实现 客户端操作步骤 服务器端操作步骤 系统版本&#xff…

PIP换源的全面指南

##概述 在Python的世界里&#xff0c;pip是不可或缺的包管理工具&#xff0c;它帮助开发者安装和管理Python软件包。然而&#xff0c;由于网络条件或服务器位置等因素&#xff0c;直接使用默认的pip源有时会遇到下载速度慢或者连接不稳定的问题。这时&#xff0c;更换pip源到一…

用Conda配置 Stable Diffusion WebUI 1.9.4

用Conda配置 Stable Diffusion WebUI 1.9.4 本文主要讲解: 如何用Conda搭建Stable Diffusion WebUI 1.9.4环境,用Conda的方式安装,不需要单独去安装Cuda了。 1. 安装miniconda https://docs.anaconda.com/free/miniconda/index.html 2. 搭建虚拟环境 激活python虚拟环境…

PFC电路中MOS管的选取2

上面这种驱动方式叫推挽驱动&#xff0c;或者图腾柱驱动 当芯片驱动脚 DRV为高电平时&#xff0c;此时回路中的源是芯片的 DRV引脚&#xff0c;芯片驱动电流从左往右流动&#xff0c;通过 R1&#xff0c;通过Q1的be脚&#xff0c;通过R3、R4给MOS管Q4的Cgs结电容充电 不过值得…

AI工具,如何通过 GPT-4o 提高工作效率

文章目录 引言一、理解GPT-4o及其功能二、如何利用GPT-4o提高工作效率1. 代码生成与优化2. 自动化测试与调试3. 技术文档撰写与知识管理 三、实际案例与成功应用1. GitHub 协作与问题解决2. 敏捷开发与迭代优化 四、GPT-4o的挑战与应对策略五、未来展望与发展方向六、结论 &…

Django QuerySet对象,filter()方法

filter()方法 用于实现数据过滤功能&#xff0c;相当于sql语句中的where子句。 filter(字段名__exact10) 或 filter(字段名10)类似sql 中的 10 filter(字段名__gt10) 类似SQL中的 >10 filter(price__lt29.99) 类似sql中的 <29.99 filter(字段名__gte10, 字段名__lte20…

开始尝试从0写一个项目--前端(一)

基础项目构建 创建VUE初始工程 确保自己下载了node.js和npm node -v //查看node.js的版本 npm -v //查看npm的版本 npm i vue/cli -g //安装VUE CLI 创建 以管理员身份运行 输入&#xff1a;vue ui 就会进入 点击创建 自定义项目名字&#xff0c;选择npm管理 结…

14-23 剑和远方3 - 深度神经网络的主要架构

神经网络架构 神经网络的架构决定了这些网络如何运行&#xff0c;这是执行各种任务和扩展神经网络应用的关键因素&#xff0c;主要有两种方法&#xff1a;前馈神经网络和反馈神经网络。在本文中&#xff0c;在彻底分析每种方法之后&#xff0c;我们将对这两种架构进行深入比较…

redhat7.x 升级openssh至openssh-9.8p1

1.环境准备&#xff1a; OS系统&#xff1a;redhat 7.4 2.备份配置文件&#xff1a; cp -rf /etc/ssh /etc/ssh.bak cp -rf /usr/bin/openssl /usr/bin/openssl.bak cp -rf /etc/pam.d /etc/pam.d.bak cp -rf /usr/lib/systemd/system /usr/lib/systemd/system.bak 3.安装…

【ai】pycharm添加本地解释器

解释器右键可以重命名 系统的解释器竟然安装了4个 可以先使用python虚拟环境中的解释器 虚拟环境虽然是属于其他的项目的&#xff0c;但是看起来也可以给自己的当前项目用&#xff1a; 添加了 别的项目里虚拟环境的解释器

axios的底层ajax,XMLHttpRequest原理解释及使用方法

定义 ajax全称asychronous JavaScript and XML 意思是异步的 JavaScript和xml&#xff0c; 也就是通过javascript创建XMLHttpRequest &#xff08;xhr&#xff09;对象与服务器进行通信 步骤 创建实例对象&#xff0c;初始请求方法和url&#xff0c;设置监听器监听请求完成…

C# 快速排序算法的详细讲解

目录 一、前言 二、例子 三、快速排序算法图片讲解 四、快速排序算法代码 五、纯净代码 一、前言 用比较好懂的方式讲一下快速排序算法。 二、例子 如果我有一堆钱&#xff0c;想数清楚&#xff0c;最快的方案是什么&#xff1f; 图1 一堆钱 答&#xff1a;先分类&…

Python | Leetcode Python题解之第213题打家劫舍II

题目&#xff1a; 题解&#xff1a; class Solution:def rob(self, nums: List[int]) -> int:def robRange(start: int, end: int) -> int:first nums[start]second max(nums[start], nums[start 1])for i in range(start 2, end 1):first, second second, max(fi…

谷粒商城学习笔记-16-人人开源搭建后台管理系统

文章目录 一&#xff0c;克隆前/后端代码1&#xff0c;克隆前端工程renren-fast-value2&#xff0c;克隆后端工程renren-fast 二&#xff0c;集成后台管理系统的后端代码三&#xff0c;启动后台管理系统四&#xff0c;前端系统的安装和运行1&#xff0c;下载安装VSCode2&#x…