逻辑回归模型(非回归问题,而是分类问题)

目录:

  • 一、Sigmoid函数:
  • 二、逻辑回归介绍:
  • 三、决策边界
  • 四、逻辑回归模型训练过程:
    • 1.训练目标:
    • 2.梯度下降调整参数:

一、Sigmoid函数:

Sigmoid函数是构建逻辑回归模型的重要函数,如下图所示。
在这里插入图片描述

  • 分类问题目标是将模型的输出结果控制在[0,1]的范围内,当模型输出结果<0.5,默认预测结果为0;当模型输出结果>0.5,默认预测结果为1。
  • 二分类问题的解决思路是:通过构建逻辑回归模型f将二分类问题的输入x映射到Sigmoid函数的输入z上计算输出g,再根据g的范围(是否大于0.5)获得逻辑回归模型的结果(即二分类问题的结果)。
  • 函数的定义域∈R,值域∈[0,1],当输入z<0时,Sogmoid函数输出结果g<0.5,默认为结果是0,构成二分类问题的第一个类别。当输入z>0时,Sogmoid函数输出结果g>0.5,默认为结果是1,构成二分类问题的第二个类别

二、逻辑回归介绍:

逻辑回归用来解决二分类问题。分类问题即模型的输出结果只有有限个(回归问题则是无限个),二分类问题即模型的输出结果只有两个。

在回归问题的经典案例“肿瘤预测案例”中,使用肿瘤尺寸size特征预测该肿瘤是否是恶性肿瘤,输出结果只有两种:是(1)或否(0)。
在这里插入图片描述
这时使用线性回归模型就很难拟合训练集 (线性回归解决的是回归问题,而肿瘤预测案例是一个分类问题,准确说是二分类问题),因此提出了逻辑回归思想。
在这里插入图片描述
逻辑回归模型(解决分类问题):输入特征或特征集X并输出0~1之间的数字,其中拟合曲线通过Sogmoid函数来构造。具体构造流程如下图:
在这里插入图片描述
在这里插入图片描述

  • 第一行解释:逻辑回归模型f的构造同线性回归,通过输入特征集X输出预测结果f,不同点在于f取值范围∈[0,1]
  • 第二三四行解释:之前我们介绍了Sigmoid函数的输出g可以很好的解决二分类问题,因此我们巧妙地使用了Sigmoid函数来构建逻辑回归模型f解决二分类问题,通过将输入特征集X使用线性回归或多项式回归映射到Sigmoid函数的输入z实现Sigmoid函数的输出然后根据Sigmoid函数输出结果是否大于0.5来计算逻辑回归模型的输出f(0或1),得到二分类问题的结果。
  • 第五行解释:上述思想整合一下即可得出逻辑回归模型f,其中模型的输入是特征集X,输出是分类的预测结果0或1。
  • 第六行解释:当逻辑回归模型的输出结果大于等于0.5时,预测值y^为1,用上文的例子来讲就是该肿瘤是恶性肿瘤;当逻辑回归模型的输出结果小于等于0.5时,预测值为0,用上文的例子来讲就是该肿瘤不是恶性肿瘤。

三、决策边界

从上文不难得到,当Sigmoid函数的输入z大于等于0时,即特征集X到z的映射z=wx+b大于等于0时,模型的输出结果是1;当Sigmoid函数的输入z小于0时,即特征集X到z的映射z=wx+b小于0时,模型的输出结果是0。
这是我们可以提出决策边界的概念:使得模型输入X到Sigmoid函数输入z的映射等于0的方程叫做决策边界。

以上述肿瘤预测模型为例,模型输入X到Sigmoid函数输入z的映射为z=wx+b,那么决策边界就是wx+b=0。

下面让我们用图像来展示决策边界的意义:

  • 例1:映射为线性函数
    在这里插入图片描述
    上图展示了训练集中特征x1、x2不同取值时标签的真实值,其中圈代表该样本分类结果为0,叉代表该样本分类结果为1。

    逻辑回归模型如上图,其中模型输入X到Sigmoid函数输入z的映射为z=w1x1+w2x2+b,则决策边界为w1x1+w2x2+b=0。若模型训练结果为w1=1,w2=1,b=-3时,决策边界为x1+x2-3=0,决策边界的函数图像如上图所示,可以看到,如果样本的特征位于决策边界左侧,逻辑回归预测时0,反之为1,这就是决策边界的图像意义。

  • 例2:映射为多项式函数
    在这里插入图片描述
    模型输入X到Sigmoid函数输入z的映射为多项式函数,决策边界如图,可以看到,模型训练完成后,参数值确定了,决策边界也立即就确定了,这时样本的特征相对决策边界的位置决定了该样本的预测结果。

四、逻辑回归模型训练过程:

其实和线性回归训练过程一样,只不过是待训练模型(函数)不同而已。

1.训练目标:

在这里插入图片描述

2.梯度下降调整参数:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/372315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探展2024世界人工智能大会之令人惊艳的扫描黑科技~

文章目录 ⭐️ 前言⭐️ AIGC古籍修复文化遗产焕新⭐️ 高效的文档图像处理解决方案⭐️ AIGC扫描黑科技一键全搞定⭐️ 行业级的知识库大模型加速器⭐️ 结语 ⭐️ 前言 大家好,我是 哈哥(哈哥撩编程),这次非常荣幸受邀作为专业…

Linux中的粘滞位及mysql日期函数

只要用户具有目录的写权限, 用户就可以删除目录中的文件, 而不论这个用户是否有这个文件的写 权限. 为了解决这个不科学的问题, Linux引入了粘滞位的概念. 粘滞位 当一个目录被设置为"粘滞位"(用chmod t),则该目录下的文件只能由 一、超级管理员删除 二、该目录…

回归损失和分类损失

回归损失和分类损失是机器学习模型训练过程中常用的两类损失函数,分别适用于回归任务和分类任务。 回归损失函数 回归任务的目标是预测一个连续值,因此回归损失函数衡量预测值与真实值之间的差异。常见的回归损失函数有: 均方误差&#xff…

匈牙利汽车市场研究报告(2024版)

匈牙利加入欧盟后成为欧洲国家的汽车制造组装基地和大型跨国企业的零部件供应商,具有深厚的汽车工业基础。在欧债危机后,匈牙利政府提出“向东发展”战略,并将电动化作为汽车行业新的发展方向,通过一系列外资友好政策吸引中日韩等…

数据泄露态势(2024年5月)

监控说明:以下数据由零零信安0.zone安全开源情报系统提供,该系统监控范围包括约10万个明网、深网、暗网、匿名社交社群威胁源。在进行抽样事件分析时,涉及到我国的数据不会选取任何政府、安全与公共事务的事件进行分析。如遇到影响较大的伪造…

RxJava学习记录

文章目录 1. 总览1.1 基本原理1.2 导入包和依赖 2. 操作符2.1 创建操作符2.2 转换操作符2.3 组合操作符2.4 功能操作符 1. 总览 1.1 基本原理 参考文献 构建流:每一步操作都会生成一个新的Observable节点(没错,包括ObserveOn和SubscribeOn线程变换操作…

【零基础】学JS之APIS(基于黑马)

喝下这碗鸡汤 披盔戴甲,一路勇往直前! 1. 什么是事件 事件是在编程时系统内发生的动作或者发生的事情 比如用户在网页上单击一个按钮 2. 什么是事件监听? 就是让程序检测是否有事件产生,一旦有事件触发,就立即调用一个函数做出响应,也称为 注…

详解Java垃圾回收(GC)机制

一、为什么需要垃圾回收 如果不进行垃圾回收,内存迟早都会被消耗空,因为我们在不断的分配内存空间而不进行回收。除非内存无限大,我们可以任性的分配而不回收,但是事实并非如此。所以,垃圾回收是必须的。 二、哪些内…

【Selenium配置】WebDriver安装浏览器驱动(ChromeEdge)

【Selenium配置】WebDriver安装浏览器驱动(Chrome&Edge) 文章目录 【Selenium配置】WebDriver安装浏览器驱动(Chrome&Edge)Chrome确认Chrome版本下载对应driver把解压后的chromedriver文件放在chrome安装目录下&#xff0…

深入讲解C++基础知识(三)

目录 一、命名空间1. 创建命名空间2. 访问命名空间2.1 using 编译指令2.2 using 声明2.3 直接使用全名 3. 嵌套命名空间4. 匿名命名空间5. 命名空间的注意事项5.1 头文件中不应该包含 using 声明和 using 编译指令。5.2 最好使用 using 声明而不是 using 编译指令 二、标准库类…

极客天成RDMA分布式存储加速自动驾驶仿真建模

01 自动驾驶汽车行业发展现状 随着全球5G技术的应用与发展,人工智能产业的逐步推进,无人驾驶汽车行业市场规模显著增长。中商产业研究院发布的《2024-2029全球与中国无人驾驶列车系统市场现状及未来发展趋势》显示,2023年全球无人驾驶汽车行…

Redis 7.x 系列【16】持久化机制之 AOF

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 执行原理2.1 Redis 6.x2.1.1 直接写2.1.2 重写 2.2 Redis 7.x2.2.1 直接写2…

JAVA基础-----128陷阱

一、何为128陷阱 Java中Integer类型在使用比较时的特殊行为------128陷阱,解释了当数值在-128到127范围内,由于valueOf方法的缓存机制导致地址相同,比较为真;超出这个范围则新分配内存,地址不同,比较为假。…

抖音矩阵云剪系统saas源码 短视频矩阵获客管理系统

2024抖音矩阵云混剪系统是一款专业的短视频营销管理工具。该系统支持多平台多账号的集中式管理,并实现一键式作品发布功能。它配备了智能标题生成和关键词优化工具,以及排名查询机制,帮助用户提升内容在平台上更好的矩阵管理. 智能剪辑 托管发…

Vue框架引入

vue简介 1.1.vue是什么?Vue官网 英文官网: https://vuejs.org/中文官网: https://cn.vuejs.org/ vue是一套构建用户界面的渐进式javascript框架 构建用户界面:将我们手里拿到的数据通过某种办法变成用户可以看见的界面前端工程师的职责:就是在合适的时候发出合适的请求,然后…

树莓派_Pytorch学习笔记20:初步认识深度学习框架

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi) 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: ​ Python 版本3.7.3: ​ 本文很水,就介绍一下我以后的学习使用P…

R包:ggsci期刊配色

介绍 不同期刊配色大多数时候不一样,为了更好符合期刊图片颜色的配色,有人开发了ggsci这个R包。它提供以下函数: scale_color_palname() scale_fill_palname() 对应不同期刊的color和fill函数。 导入数据R包 library("ggsci")…

vue + element ui 实现侧边栏导航栏折叠收起

首页布局如下 要求点击按钮,将侧边栏收缩, 通过 row 和 col 组件&#xff0c;并通过 col 组件的 span 属性我们就可以自由地组合布局。 折叠前 折叠后 <template><div class"app-layout" :class"{ collapse: app.isFold }"><div class&…

CANoe的capl调用Qt制作的dll

闲谈 因为Qt封装了很多个人感觉很好用的库&#xff0c;所以一直想通过CAPL去调用Qt实现一些功能&#xff0c;但是一直没机会&#xff08;网络上也没看到这方面的教程&#xff09;&#xff0c;这次自己用了两天&#xff0c;踩了很多坑&#xff0c;终于是做成了一个初步的调用方…

Zabbix分布式监控

目录 分布式监控架构 实现分布式监控的步骤 优点和应用场景 安装Zabbix_Proxy Server端Web页面配置 测试 Zabbix 的分布式监控架构允许在大规模和地理上分散的环境中进行高效的监控。通过分布式监控&#xff0c;Zabbix 可以扩展其监控能力&#xff0c;支持大量主机和设备…