基于深度学习LightWeight的人体姿态之行为识别系统源码

一. LightWeight概述

        light weight openpose是openpose的简化版本,使用了openpose的大体流程。

        Light weight openpose和openpose的区别是:

        a 前者使用的是Mobilenet V1(到conv5_5),后者使用的是Vgg19(前10层)。

        b 前者部分层使用了空洞卷积(dilated convolution)来提升感受视野,后者使用一般的卷积。

        c 前者卷积核大小为3*3,后者为7*7。

        d 前者只有一个refine stage,后者有5个stage。

        e 前者的initial stage和refine stage里面的两个分支(hotmaps和pafs)使用权值共享,后者则是并行的两个分支

二. LightWeight的网络结构

        openpose的每个stage使用下图中左侧的两个并行的分支,分别预测hotmaps和pafs,为了进一步降低计算量,light weight openpose中将前几层进行权值共享,如下图右侧所示。

        其网络流程:

三. LightWeight的网络结构代码

import torch
from torch import nnfrom modules.conv import conv, conv_dw, conv_dw_no_bnclass Cpm(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.align = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)self.trunk = nn.Sequential(conv_dw_no_bn(out_channels, out_channels),conv_dw_no_bn(out_channels, out_channels),conv_dw_no_bn(out_channels, out_channels))self.conv = conv(out_channels, out_channels, bn=False)def forward(self, x):x = self.align(x)x = self.conv(x + self.trunk(x))return xclass InitialStage(nn.Module):def __init__(self, num_channels, num_heatmaps, num_pafs):super().__init__()self.trunk = nn.Sequential(conv(num_channels, num_channels, bn=False),conv(num_channels, num_channels, bn=False),conv(num_channels, num_channels, bn=False))self.heatmaps = nn.Sequential(conv(num_channels, 512, kernel_size=1, padding=0, bn=False),conv(512, num_heatmaps, kernel_size=1, padding=0, bn=False, relu=False))self.pafs = nn.Sequential(conv(num_channels, 512, kernel_size=1, padding=0, bn=False),conv(512, num_pafs, kernel_size=1, padding=0, bn=False, relu=False))def forward(self, x):trunk_features = self.trunk(x)heatmaps = self.heatmaps(trunk_features)pafs = self.pafs(trunk_features)return [heatmaps, pafs]class RefinementStageBlock(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.initial = conv(in_channels, out_channels, kernel_size=1, padding=0, bn=False)self.trunk = nn.Sequential(conv(out_channels, out_channels),conv(out_channels, out_channels, dilation=2, padding=2))def forward(self, x):initial_features = self.initial(x)trunk_features = self.trunk(initial_features)return initial_features + trunk_featuresclass RefinementStage(nn.Module):def __init__(self, in_channels, out_channels, num_heatmaps, num_pafs):super().__init__()self.trunk = nn.Sequential(RefinementStageBlock(in_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels),RefinementStageBlock(out_channels, out_channels))self.heatmaps = nn.Sequential(conv(out_channels, out_channels, kernel_size=1, padding=0, bn=False),conv(out_channels, num_heatmaps, kernel_size=1, padding=0, bn=False, relu=False))self.pafs = nn.Sequential(conv(out_channels, out_channels, kernel_size=1, padding=0, bn=False),conv(out_channels, num_pafs, kernel_size=1, padding=0, bn=False, relu=False))def forward(self, x):trunk_features = self.trunk(x)heatmaps = self.heatmaps(trunk_features)pafs = self.pafs(trunk_features)return [heatmaps, pafs]class PoseEstimationWithMobileNet(nn.Module):def __init__(self, num_refinement_stages=1, num_channels=128, num_heatmaps=19, num_pafs=38):super().__init__()self.model = nn.Sequential(conv(     3,  32, stride=2, bias=False),conv_dw( 32,  64),conv_dw( 64, 128, stride=2),conv_dw(128, 128),conv_dw(128, 256, stride=2),conv_dw(256, 256),conv_dw(256, 512),  # conv4_2conv_dw(512, 512, dilation=2, padding=2),conv_dw(512, 512),conv_dw(512, 512),conv_dw(512, 512),conv_dw(512, 512)   # conv5_5)self.cpm = Cpm(512, num_channels)self.initial_stage = InitialStage(num_channels, num_heatmaps, num_pafs)self.refinement_stages = nn.ModuleList()for idx in range(num_refinement_stages):self.refinement_stages.append(RefinementStage(num_channels + num_heatmaps + num_pafs, num_channels,num_heatmaps, num_pafs))def forward(self, x):backbone_features = self.model(x)backbone_features = self.cpm(backbone_features)stages_output = self.initial_stage(backbone_features)for refinement_stage in self.refinement_stages:stages_output.extend(refinement_stage(torch.cat([backbone_features, stages_output[-2], stages_output[-1]], dim=1)))return stages_output

四. LightWeight是怎么去识别行为呢

        LightWeight可以检测到人体的关键点,所以可以通过两种方式来判断行为,第一种方法是通过计算角度,第二种方式,是通过判断整体的关键点(把抠出的关键点图送入到分类网络),本文的做法是第一种方式

#   计算姿态
def get_pos(keypoints):str_pose = ""# 计算左臂与水平方向的夹角keypoints = np.array(keypoints)v1 = keypoints[1] - keypoints[0]v2 = keypoints[2] - keypoints[0]angle_left_arm = get_angle(v1, v2)#计算右臂与水平方向的夹角v1 = keypoints[0] - keypoints[1]v2 = keypoints[3] - keypoints[1]angle_right_arm = get_angle(v1, v2)if angle_left_arm>0 and angle_right_arm>0:str_pose = "LEFT_UP"elif angle_left_arm<0 and angle_right_arm<0:str_pose = "RIGHT_UP"elif angle_left_arm>0 and angle_right_arm<0:str_pose = "ALL_HANDS_UP"elif angle_left_arm>0 and angle_right_arm<0:str_pose = "NORMAL"return str_pose

五. LightWeight的演示效果

视频演示地址:基于深度学习LightWeight的人体姿态之行为识别系统源码_哔哩哔哩_bilibili

六. 整个工程的内容

提供源代码,模型,提供GUI界面代码

代码的下载路径(新窗口打开链接)基于深度学习LightWeight的人体姿态之行为识别系统源码

有问题可以私信或者留言,有问必答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/374625.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django QuerySet对象,exclude()方法

模型参考上一章内容&#xff1a; Django QuerySet对象&#xff0c;filter()方法-CSDN博客 exclude()方法&#xff0c;用于排除符合条件的数据。 1&#xff0c;添加视图函数 Test/app11/views.py from django.shortcuts import render from .models import Postdef index(re…

从0开始的STM32HAL库学习4

对射式红外传感器计数复现 配置工程 我们直接复制oled的工程&#xff0c;但是要重命名。 将PB14设置为中断引脚 自定义命名为sensorcount 设置为上升沿触发 打开中断 配置NVCI 都为默认就可以了 修改代码 修改stm32f1xx_it.c 文件 找到中断函数并修改 void EXTI15_10_I…

pytorch实现水果2分类(蓝莓,苹果)

1.数据集的路径&#xff0c;结构 dataset.py 目的&#xff1a; 输入&#xff1a;没有输入&#xff0c;路径是写死了的。 输出&#xff1a;返回的是一个对象&#xff0c;里面有self.data。self.data是一个列表&#xff0c;里面是&#xff08;图片路径.jpg&#xff0c;标签&…

Docker安装遇到问题:curl: (7) Failed to connect to download.docker.com port 443: 拒绝连接

问题描述 首先&#xff0c;完全按照Docker官方文档进行安装&#xff1a; Install Docker Engine on Ubuntu | Docker Docs 在第1步&#xff1a;Set up Dockers apt repository&#xff0c;执行如下指令&#xff1a; sudo curl -fsSL https://download.docker.com/linux/ubu…

MybatisPlus 使用教程

MyBatisPlus使用教程 文章目录 MyBatisPlus使用教程1、使用方式1.1 引入依赖1.2 构建mapper接口 2、常用注解2.1 TableName2.2 TableId2.3 TableField MyBatisPlus顾名思义便是对MyBatis的加强版&#xff0c;但两者本身并不冲突(只做增强不做改变)&#xff1a; 引入它并不会对原…

[数据集][目标检测]护目镜检测数据集VOC+YOLO格式888张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;888 标注数量(xml文件个数)&#xff1a;888 标注数量(txt文件个数)&#xff1a;888 标注类别…

C语言基本概念

C语言是什么&#xff1f; 1.人与人之间 自然语言 2.人与计算机之间 计算机语言 例如C、Java、Go、Python 在计算机语言中 1.解释型语言&#xff1a;Python 2.编译型语言&#xff1a;C/C 编译和链接 C语言源代码都是文本文件.c&#xff0c;必须通过编译器的编译和链接器的…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-第十八章 Linux编写第一个自己的命令

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

基于Python的哔哩哔哩数据分析系统设计实现过程,技术使用flask、MySQL、echarts,前端使用Layui

背景和意义 随着互联网和数字媒体行业的快速发展&#xff0c;视频网站作为重要的内容传播平台之一&#xff0c;用户量和内容丰富度呈现爆发式增长。本研究旨在设计并实现一种基于Python的哔哩哔哩数据分析系统&#xff0c;采用Flask框架、MySQL数据库以及echarts数据可视化技术…

昇思MindSpore学习入门-参数初始化

使用内置参数初始化 MindSpore提供了多种网络参数初始化的方式&#xff0c;并在部分算子中封装了参数初始化的功能。本节以Conv2d为例&#xff0c;分别介绍如何使用Initializer子类&#xff0c;字符串进行参数初始化。 Initializer初始化 Initializer是MindSpore内置的参数初…

硬件开发工具Arduino IDE

招聘信息共享社群 关联上篇文章乐鑫ESPRESSIF芯片开发简介 Arduino IDE&#xff08;集成开发环境&#xff09;是为Arduino硬件开发而设计的一款软件&#xff0c;它提供了一个易于使用的图形界面&#xff0c;允许用户编写、编辑、编译和上传代码到Arduino开发板。Arduino IDE的…

【前端】包管理器:npm、Yarn 和 pnpm 的全面比较

前端开发中的包管理器&#xff1a;npm、Yarn 和 pnpm 的全面比较 在现代前端开发中&#xff0c;包管理器是开发者必不可少的工具。它们不仅能帮我们管理项目的依赖&#xff0c;还能极大地提高开发效率。本文将详细介绍三种主流的前端包管理器&#xff1a;npm、Yarn 和 pnpm&am…

六、数据可视化—Echars(爬虫及数据可视化)

六、数据可视化—Echars&#xff08;爬虫及数据可视化&#xff09; Echarts应用 Echarts Echarts官网&#xff0c;很多图表等都是我们可以 https://echarts.apache.org/zh/index.html 是百度自己做的图表&#xff0c;后来用的人越来越多&#xff0c;捐给了orange组织&#xf…

相机光学(三十)——N5-N7-N8中性灰

GTI可提供N5/N7/N8中性灰涂料&#xff0c;用于不同的看色环境&#xff0c;N5/N7/N8代表深中浅不同的灰色程度&#xff0c;在成像、工业、印刷行业中&#xff0c;分别对周围观察环境有一定的要求&#xff0c;也出台了相应的标准文件&#xff0c;客户可以根据实际使用环境进行选择…

FiddlerScript Rules修改-更改发包中的cookie

直接在fiddler script editor中增加如下处理代码即可 推荐文档oSession -- 参数说明 测试笔记 看云

树莓派4B_OpenCv学习笔记19:OpenCV舵机云台物体追踪

今日继续学习树莓派4B 4G&#xff1a;&#xff08;Raspberry Pi&#xff0c;简称RPi或RasPi&#xff09; 本人所用树莓派4B 装载的系统与版本如下: 版本可用命令 (lsb_release -a) 查询: Opencv 版本是4.5.1&#xff1a; Python 版本3.7.3&#xff1a; ​​ 今日学习&#xff1…

RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了

RAG 工业落地方案框架&#xff08;Qanything、RAGFlow、FastGPT、智谱RAG&#xff09;细节比对&#xff01;CVPR自动驾驶最in挑战赛赛道&#xff0c;全球冠军被算力选手夺走了。 本文详细比较了四种 RAG 工业落地方案 ——Qanything、RAGFlow、FastGPT 和智谱 RAG&#xff0c;重…

不仅是输出信息,console.log 也能玩出花

console.log 是 JavaScript 中一个常用的函数&#xff0c;用于向控制台输出信息。 console.log 虽然主要用于调试目的&#xff0c;但也包含了一些有趣的用法&#xff0c; console.log 不仅能输出文本&#xff0c;还能以更丰富的方式展示信息。 比如我们打开 B 站&#xff0c;然…

79. UE5 RPG 创建技能冷却和消耗

在这一篇里面&#xff0c;我们接着优化技能&#xff0c;现在角色添加的主动技能能够同步到ui上面。我们在这一篇文章里面&#xff0c;完善技能的消耗&#xff08;释放技能减少蓝量&#xff09;和冷却机制。 我们可以看到&#xff0c;在技能类默认值这里&#xff0c;可以设置它的…

【YashanDB知识库】YashanDB 开机自启

【问题分类】 YashanDB 开机自启 【关键字】 开机自启&#xff0c;依赖包 【问题描述】 数据库所在服务器重启后只拉起monit、yasom、yasom进程&#xff0c;缺少yasdb进程&#xff1a; 【问题原因分析】 数据库安装的时候未启动守护进程 【解决 / 规避方法】 进入数据库之前…