概论(二)随机变量

1.名词解释

1.1 样本空间

一次具体实验中所有可能出现的结果,构成一个样本空间。

1.2 随机变量

把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自变量,此处我们不用Y而是用P(X)来表示,P(X)就是X取某值时的概率。

1.3 结果轴

随机变量X作为结果是均匀分布在x轴上的,有的是x轴上某一段,甚至只是x轴上的两个点,例如抛硬币只有两种结果,所以对应在x轴上只有两个点x=1或x=0。有的结果可以遍布整个x轴。

误区:在写这段的时候莫名地把正态分布认为是标准正太分布,想到人的身高是符合正太分布的,但又考虑到人的身高不可能有负数,所以大脑就迷糊了。

1.4 概率密度函数PMF

结果是在x轴上均匀分布的,但是每次实验取得结果的可能性却不一定相同,拿离散变量中连续抛两次硬币的结果统计,显然

第一次正第一次反
第二次正1/41/4
第二次反1/41/4

所以一正一反的概率为1/2,X取不同值P(X)随之相应变化,这就构成了概率函数,为什么叫概率密度函数呢?我门可以想象一条由无数个密度不同的铁点焊接成的铁丝,我们任选铁丝其中一点这就类似于随机变量X的取值,该点的密度就类似于概率P(X)

2.常见分布

2.1 常见离散分布

离散分布的概率计算是有限种结果的概率累加
P ( X ∣ X ≤ x n ) = ∑ i = 1 n P ( x i ) P(X|X\le x_n)=\sum_{i=1}^{n}P(x_i) P(XXxn)=i=1nP(xi)

2.1.1 二项分布

2.1.2 几何分布

2.1.3 泊松分布

泊松分布是n很大,p很小的二项分布的近似,其中 λ = n p \lambda=np λ=np

2.2 常见连续分布

连续分布无法通过直接累加进行计算,因为其包含无数种可能,所以我们利用积分的形式进行计算。

2.2.1 均匀分布

2.2.2 指数分布

2.2.3正态分布(高斯分布)

  • 一元高斯分布
  • 多元高斯分布
    X X X有多个维度 x 1 , x 2 , . . . x p x_1,x_2,...x_p x1,x2,...xp X X X可以有n个,所以构成了n*p的矩阵
    X = [ x 11 x 12 x 13 . . . x 1 p x 21 x 22 x 23 . . . x 2 p . . . . . . . . . . . . x n 1 x n 2 x n 3 . . . x n p ] X=\begin{bmatrix} x_{11}&x_{12}&x_{13}&...x_{1p}\\ x_{21}&x_{22}&x_{23}&...x_{2p}\\ ...&...&...&...\\ x_{n1}&x_{n2}&x_{n3}&...x_{np} \end{bmatrix} X= x11x21...xn1x12x22...xn2x13x23...xn3...x1p...x2p......xnp

对比一元高斯矩阵期望 μ 4 \mu4 μ4%此时的 μ = [ μ 1 μ 1 2 . . . u n ] \mu=\begin{bmatrix} \mu_1\\\mu_12\\...\\u_n \end{bmatrix} μ= μ1μ12...un ,是一个向量。

对比一元高斯矩阵的方差 σ 2 \sigma^2 σ2,多元高斯分布的是协方差矩阵,同样是一个对称矩阵
∑ = [ σ 11 σ 12 σ 13 . . . σ 1 p σ 21 σ 22 σ 23 . . . σ 2 p . . . . . . . . . . . . σ p 1 σ p 2 σ p 3 . . . σ p p ] \sum = \begin{bmatrix} \sigma_{11}&\sigma_{12}&\sigma_{13}&...\sigma_{1p}\\ \sigma_{21}&\sigma_{22}&\sigma_{23}&...\sigma_{2p}\\ ...&...&...&...\\ \sigma_{p1}&\sigma_{p2}&\sigma_{p3}&...\sigma_{pp} \end{bmatrix} = σ11σ21...σp1σ12σ22...σp2σ13σ23...σp3...σ1p...σ2p......σpp

概率密度函数
p ( x ∣ θ ) = 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 e x p [ − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] p(x|\theta)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma |^{\frac{1}{2}}}exp[-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)] p(xθ)=(2π)2p∣Σ211exp[21(xμ)TΣ1(xμ)]

3. 二维分布

随机变量X和Y, P ( X = x i , Y = y i ) P(X=x_i,Y=y_i) P(X=xi,Y=yi)表示两件事同时发生概率,又称联合分布概率, P ( X = x i ∣ Y = y i ) P(X=x_i|Y=y_i) P(X=xiY=yi)表示Y=y发生的条件下X=x的发生概率,又称条件概率。 P ( X = x i ) P(X=x_i) P(X=xi)成为边缘分布概率。
条件分布 = 联合分布 边缘分布 条件分布=\frac{联合分布}{边缘分布} 条件分布=边缘分布联合分布

得明白一个事情,就是如果X与Y没有交集那么对于二维分布来说就没有太多讨论的意义,因为两者的条件分布和联合分布概率都为0,边缘分布就是内部 P ( X = x i ) 或 ( Y = y i ) P(X=x_i)或(Y=y_i) P(X=xi)(Y=yi)
请添加图片描述

Q1:如果X和Y有交集,那 P ( X = x 5 , Y = y 5 ) P(X=x_5,Y=y_5) P(X=x5,Y=y5)等于 P ( X = x 5 ∣ Y = y 5 ) P(X=x_5|Y=y_5) P(X=x5Y=y5)吗?
P ( X = x 5 , Y = y 5 ) P(X=x_5,Y=y_5) P(X=x5,Y=y5)的样本空间大小是55=25个,而 P ( X = x 5 ∣ Y = y 5 ) P(X=x_5|Y=y_5) P(X=x5Y=y5)的样本空间大小是51=5个

在这里插入图片描述

3.2 独立与相关

独立不代表两者不相容,两者不相容也不能证明两者独立
独立一定不相关,不独立一定相关,相关不一定不独立

X与Y独立,分别从离散和连续两个方面请证明:
E ( X + Y ) = E X + E Y E(X+Y)=EX+EY E(X+Y)=EX+EY
E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
V ( X + Y ) = V ( X ) + V ( Y ) V(X+Y)=V(X)+V(Y) V(X+Y)=V(X)+V(Y)

3.3 协方差

方差:
V [ X ] = E [ ( X − E [ X ] ) 2 ] = E [ X 2 − 2 X E [ X ] + ( E [ X ] ) 2 ] = E [ X 2 ] − 2 ( E [ X ] ) 2 + ( E [ X ] ) 2 = E [ X 2 ] − ( E [ X ] ) 2 V[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+(E[X])^2]=E[X^2]-2(E[X])^2+(E[X])^2=E[X^2]-(E[X])^2 V[X]=E[(XE[X])2]=E[X22XE[X]+(E[X])2]=E[X2]2(E[X])2+(E[X])2=E[X2](E[X])2
协方差:
c o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] cov(X,Y)=E[(X-E(X))(Y-E(Y))] cov(X,Y)=E[(XE(X))(YE(Y))]

体会两者的不同

3.4 协方差矩阵

如果随机变量的个数提高到n个,则需要单独计算每个变量之间的协方差,同样也需要计算自己与自己的协方差,根据公式可知自己与自己的协方差就是方差,如此我们就构建了一个对称矩阵,称为协方差矩阵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot实战:轻松实现接口数据脱敏

一、接口数据脱敏概述 1.1 接口数据脱敏的定义 接口数据脱敏是Web应用程序中一种保护敏感信息不被泄露的关键措施。在API接口向客户端返回数据时,系统会对包含敏感信息(如个人身份信息、财务数据等)的字段进行特殊处理。这种处理通过应用特…

多个版本JAVA切换(学习笔记)

多个版本JAVA切换 很多时候,我们电脑上会安装多个版本的java版本,java8,java11,java17等等,这时候如果想要切换java的版本,可以按照以下方式进行 1.检查当前版本的JAVA 同时按下 win r 可以调出运行工具…

WMS系统的核心功能

WMS系统(Warehouse Management System)的核心功能主要包括以下几个方面: ———————————————————————— 1、库存管理: 1):跟踪库存数量、位置和状态,确保实时库存可见性。 2):支持批次管理、序列…

文心快码——百度研发编码助手

介绍 刚从中国互联网大会中回来,感受颇深吧。百度的展商亮相了文心快码,展商人员细致的讲解让我们一行了解到该模型的一些优点。首先,先来简单介绍一下文心快码吧。 文心快码(ERNIE Code)是百度公司推出的一个预训练…

【STM32标准库】读写内部FLASH

1.内部FLASH的构成 STM32F407的内部FLASH包含主存储器、系统存储器、OTP区域以及选项字节区域。 一般我们说STM32内部FLASH的时候,都是指这个主存储器区域,它是存储用户应用程序的空间。STM32F407ZGT6型号芯片, 它的主存储区域大小为1MB。其…

ppt翻译免费怎么做?5个方法让你秒懂PPT的内容

当你收到一份来自海外的PPT资料,眼前或许是一片陌生的语言海洋,但别让这成为理解与灵感之间的障碍。 这时,一款优秀的PPT翻译软件就如同你的私人导航员,能迅速将这份知识宝藏转化为你熟悉的语言,让每一个图表、每一段…

Unity引擎制作玻璃的反射和折射效果

Unity引擎制作玻璃球玻璃杯 大家好,我是阿赵。   之前做海面效果的时候,没做反射和折射的效果,因为我觉得过于复杂的效果没有太大的实际作用。这方面的效果,我就做了现在这个例子来补充一下。 在这个demo场景里面,我…

社交媒体数据分析:赋能企业营销策略的利器

一、数据:未来的石油与导航仪 在数字化转型的大潮中,数据已成为推动企业发展的新燃料。它不仅是决策的依据,更是预见未来的水晶球。特别是在社交媒体这片广袤的海洋里,每一条帖子、每一次点赞、评论都蕴藏着消费者的偏好、市场的…

thinkphp8框架源码精讲

前言 很开心你能看到这个笔记,相信你对thinkphp是有一定兴趣的,正好大家都是志同道合的人。 thinkphp是我入门学习的第一个框架,经过这么多年了,还没好好的研究它,今年利用了空闲的时间狠狠的深入源码学习了一把&…

Proteus + Keil单片机仿真教程(五)多位LED数码管的静态显示

Proteus + Keil单片机仿真教程(五)多位LED数码管 上一章节讲解了单个数码管的静态和动态显示,这一章节将对多个数码管的静态显示进行学习,本章节主要难点: 1.锁存器的理解和使用; 2.多个数码管的接线封装方式; 3.Proteus 快速接头的使用。 第一个多位数码管示例 元件…

Qt学生管理系统(付源码)

Qt学生管理系统 一、前言1.1 项目介绍1.2 项目目标 2、需求说明2.1 功能性说明2.2 非功能性说明 三、UX设计3.1 登录界面3.2 学生数据展示3.3 信息插入和更新 三、架构说明3.1 客户端结构如下3.2 数据流程图3.2.1 数据管理3.2.2 管理员登录 四、 设计说明3.1 数据库设计3.2 结构…

嵌入式要卷成下一个Java了吗?

嵌入式系统与Java的关系在技术发展和市场需求的影响下在逐步演变,但尚未达到完全替代的阶段。我收集归类了一份嵌入式学习包,对于新手而言简直不要太棒,里面包括了新手各个时期的学习方向编程教学、问题视频讲解、毕设800套和语言类教学&…

system V共享内存【Linux】

文章目录 原理shmgetftokshmat(share memory attach)shmdt,去关联(share memory delete attach)shmctl ,删除共享内存共享内存与管道 原理 共享内存本质让不同进程看到同一份资源。 申请共享内存: 1、操作系统在物理内存当中申请…

【鸿蒙学习笔记】通过用户首选项实现数据持久化

官方文档:通过用户首选项实现数据持久化 目录标题 使用场景第1步:源码第2步:启动模拟器第3步:启动entry第6步:操作样例2 使用场景 Preferences会将该数据缓存在内存中,当用户读取的时候,能够快…

从2024上半年《人工智能现状报告》看GPU前世今生

前不久,全球领先的低代码平台Retool发布了最新的2024上半年《人工智能现状报告》,这份报告收集了约750名技术人员的意见,包括开发者、数据团队和各行业的领导者。报告通过调研人们对AI产生的情绪变化、AI应用现状、AI使用率等等几个方面总结了…

上海慕尼黑电子展开展,启明智显携物联网前沿方案亮相

随着科技创新的浪潮不断涌来,上海慕尼黑电子展在万众瞩目中盛大开幕。本次展会汇聚了全球顶尖的电子产品与技术解决方案,成为业界瞩目的焦点。启明智显作为物联网彩屏显示领域的佼佼者携产品亮相展会,为参展者带来了RTOS、LINUX全系列方案及A…

HTML 基础

文章目录 HTML 结构认识 HTML 标签HTML 文件基本结构快速生成代码框架 HTML 常见标签注释标签标题标签: h1-h6段落标签: p换行标签: br格式化标签图片标签: img超链接标签: a表格标签列表标签表单标签form 标签input 标签 label 标签select 标签textarea 标签无语义标签: div &…

浏览器书签助手mTab

本文软件由网友 P家单推人 推荐 什么是 mTab ? mTab 是免费无广告的浏览器书签助手,多端同步、美观易用的在线导航和书签工具,可以用 mTab 书签收藏并自定义常用网站的图标样式,帮助您高效管理网页和应用,提升在线体验。 官方提供…

Centos7 yum 报错「Errno 256」No more mirrors to try 解决方法

解决方案大致有三种 一、更新yum 二、若不行,可能是因为DNS不稳定吧,因为yum安装时会从三个”repo源“(base,extras,updates)随机获取地址 三、分析总结法 背景 我使用yum方式安装软件时,比…

【开源项目的机遇与挑战】探索、贡献与应对

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《热点时事》 期待您的关注 目录 引言 一:开源项目的发展趋势 🍃开源项目的蓬勃发展现状 🍃开…