论文阅读--Simple Baselines for Image Restoration

这篇文章是 2022 ECCV 的一篇文章,是旷视科技的一篇文章,针对图像恢复任务各种网络结构进行了梳理,最后总结出一种非常简单却高效的网络结构,这个网络结构甚至不需要非线性激活函数。

文章一开始就提到,虽然在图像复原领域,可以看到非常明显的进步和提升,但是这些算法框架的复杂性也随之增加。这篇文章重新思考了算法框架的设计,提出了一种非常简单的基线算法框架,这个基线算法框架不仅效果上可以超越当前的一些 SOTA 方法,而且运算效率也非常高。文章为了进一步简化这个基线模型,甚至将其中的非线性激活函数,比如 Sigmoid,ReLU,GELU,Softmax 等都可以等效替换成简单的线性相乘,最终文章提出了一个非常简单高效的基线算法框架,称为 NAFNet,全称叫 Nonlinear Activation Free Network,这个算法框架在多个图像复原任务上都以极低的运算代价取得与 SOTA 相当甚至超越 SOTA 的效果。如图 1 所示:
在这里插入图片描述

  • 图1

图像恢复任务就是将一张退化的图像(比如模糊,有噪)恢复成清晰图像,目前这类图像恢复任务基本都是基于深度学习的方法在做了,这类方法也取得了越来越好的复原效果,指标也越刷越高,绝大多数的深度学习方法,都是基于一个经典的架构,UNet,将多个 blocks 叠加成一个 U 型,中间还会带着 skip 的连接,在这个经典架构的基础上,衍生出很多变体,这些变体带来了处理效果的提升,也导致了模型的复杂度随之增加,这篇文章将模型的复杂度分为两种,一种是 block 之间的复杂度,一种是 block 内的复杂度。

  • Inter-block Complexity,一般都是多阶段的网络结构,后面阶段的网络结构会对前面阶段的输出进行 refine,每个阶段都是一个 U 型的结构,这种多阶段的设计,是想把一个困难的任务,拆分成几个简单的子任务。

  • Intra-block Complexity,有很多工作会聚焦在 block 之间的设计,文章作者也列举了一些例子。比如有的工作会将 attention 机制进行简化,用 channel attention 代替常规的 spatial attention。此外,gated liner units 和 depthwise 卷积也比较常见。还有的工作是设计了基于窗口的多头注意力机制。不过本文作者想说明的是,提升系统复杂度不是唯一的提升性能的方法,有的时候一些简单的设计也能取得 SOTA 的表现。

Build A Simple Baseline

接下来,文章开始介绍,如何构建一个足够简单的基线结构,文章作者构建的原则就是奥卡姆剃刀原则:如无必要,勿增实体,不过文章也说了,必要性的判断依据是实验经验。文章将模型的运算量限制在 16GMACs,对应的输入图像大小为 256 x 256。然后主要评估的图像复原任务是降噪和去模糊。文章中用到的网络结构,是最简单的 U 型结构,如图 2C 所示
在这里插入图片描述

  • 图 2

神经网络一般都是由 block 叠加而成的,文章用最简单的 residual block 构成基础模型 PlainNet,如图 3b 所示;
在这里插入图片描述

  • 图 3

文章接下来对 PlainNet 中的主要模块进行了讨论,包括 Normalization, Activation 以及 Attention 机制。

Normalization

现在已经有好几种不同的 Normalization 的方法,包括 batch Normalization, instance Normalization, layer Normalization 等,不同的任务,不同的网络结构,这些 Normalization 的方法发挥的作用可能也不一样。所以文章作者经过比较,最后采用了 layer Normalization 这种方法。

Activation

对于激活函数,relu 是大家经常用的一种激活函数,不过,现在也逐渐发展出来了一些其它的激活函数类型,文章提到了 GELU,实验证明,用 GELU 比用 gelu 的效果要好:

Attention

随着 transformer 结构在 CV 领域的逐渐盛行,attention 机制也变得越来越常用,文章中也用到了 attention 机制,不过与原始的 transformer 中的 attention 机制不同,文章中用到的是 channel attention,而且是经过进一步简化的 channel attention,具体结构如图 4a 所示:
在这里插入图片描述

  • 图 4

文章后面还会对 4a 的结构做进一步的简化。

Nonlinear Activation Free Network

上面的 PlainNet 运算复杂度相比之前的一些结构,已经降低了很多,但是依然可以取得 SOTA 的效果,不过文章作者并没有满足,他们认为这个网络结构可以进一步的简化,甚至可以去掉非线性激活函数,首先,文章作者分析了一些方法之后,发现 Gated Linear Units (GLU) 这个激活函数被经常用到, 所以对这个函数的性质做进一步的分析。

Gated Linear Units 的形式如下所示:

G a t e ( X , f , g , σ ) = f ( X ) ⊙ σ ( g ( X ) ) (1) Gate(\mathbf{X}, f, g, \sigma) = f(\mathbf{X}) \odot \sigma(g(\mathbf{X})) \tag{1} Gate(X,f,g,σ)=f(X)σ(g(X))(1)

其中 X X X 表示 feature map, f , g f, g f,g 表示线性变换, σ \sigma σ 表示一个非线性激活函数,比如 Sigmoid, ⊙ \odot 表示元素乘积。如果把 GLU 放入网络结构,效果可以进一步提升,但是运算复杂度也会增加,这不是文章作者想看到的,所以他们对基线网络结构中的 activation GELU 进行了改进:

G E L U ( x ) = x ϕ ( x ) (2) GELU(x) = x \phi(x) \tag{2} GELU(x)=xϕ(x)(2)

其中 ϕ \phi ϕ 表示标准正态分布的累积分布函数,一般 GELU 可以估计成如下形式:

gelu ( x ) = 0.5 x ∗ ( 1 + tanh ⁡ ( 2 / π ∗ ( x + 0.044715 ∗ x 3 ) ) ) (3) \text{gelu}(x) = 0.5 x \ast (1 + \tanh(\sqrt{2/\pi} \ast (x + 0.044715 \ast x^{3} ))) \tag{3} gelu(x)=0.5x(1+tanh(2/π (x+0.044715x3)))(3)

从公式 (1) 和公式 (2),可以注意到,GELU 是 GLU 一种特殊情况,如果 f , g f, g f,g 取恒等变换, σ \sigma σ ϕ \phi ϕ,那 GLU 就变成 GELU 了,从这种相似性,文章作者猜测 GLU 可以看成是一类广义的激活函数,或许可以替换其它的激活函数。进一步,文章作者认为 GLU 本身就包含非线性,即使去掉 σ \sigma σ 函数, G a t e ( X ) = f ( X ) ⊙ g ( X ) Gate(\mathbf{X}) = f(\mathbf{X}) \odot g(\mathbf{X}) Gate(X)=f(X)g(X) 也包含了非线性,基于这些推论,文章作者提出了一种 GLU 的简化版,直接将 feature map 在 channel 层面平分成两部分,然后再直接相乘,如图4 c 所示,这个简化后的 GLU 称为 SimpleGate,与 GELU 相比,SimpleGate 只需要简单的乘法就可以实现:

S i m p l e G a t e ( X , Y ) = X ⊙ Y (4) SimpleGate(\mathbf{X}, \mathbf{Y}) = \mathbf{X} \odot \mathbf{Y} \tag{4} SimpleGate(X,Y)=XY(4)

模块的具体结构如图 4c 所示,通过这个替换,网络的表现进一步有提升,到目前为止,网络中还剩下的非线性函数就是 channel attention 中的 Sigmoid 以及 ReLU 了。

在前面的 PlainNet 中,采用了 channel attention 的机制,如图 4a 所示,这种机制同样可以捕获到全局信息,同时保持运算的高效,它将空间信息在channel 维度先进行压缩,然后利用一个 MLP 去计算 channel attention,作为每个 feature map 的权重,再与之前的 feature map 相乘:

C A ( X ) = X ∗ σ ( W 2 max ⁡ ( 0 , W 1 p o o l ( X ) ) ) (5) CA(\mathbf{X}) = \mathbf{X} \ast \sigma(W_{2} \max (0, W_{1} pool(\mathbf{X}))) \tag{5} CA(X)=Xσ(W2max(0,W1pool(X)))(5)

其中, X \mathbf{X} X 表示 feature map,pool 表示全局平均池化操作, σ \sigma σ 表示 Sigmoid 函数, W 1 , W 2 W_1, W_2 W1,W2 表示全连接层,如果将 channel attention 的计算看成是一个函数,那么公式 (5) 可以写成:

C A ( X ) = X ∗ Φ ( X ) (6) CA(\mathbf{X}) = \mathbf{X} \ast \Phi(\mathbf{X}) \tag{6} CA(X)=XΦ(X)(6)

可以看到,公式 6 与公式 1 很像,受此启发,文章作者也推测 channel attention 可能也是 GLU 的一种特殊形式,或许也可以进行类似的简化,文章将 channel attention 最终简化成如下所示:

S C A ( X ) = X ∗ W p o o l ( X ) (7) SCA(\mathbf{X}) = \mathbf{X} \ast W pool(\mathbf{X}) \tag{7} SCA(X)=XWpool(X)(7)

模块的具体结构如图 4b 所示,相比 4a 的结构,4b 去掉了 Sigmoid 以及 ReLU,全连接也减少了一层

基于 PlainNet, 文章将其中的 GELU 以及 channel attention 做了简化,最终得到了一个不含非线性激活函数的轻量级网络,称为 NAFNet。

文章最后给出了很多实验对比,说明 NAFNet 在保持低运算代价的同时,还能保持很好的效果指标,真有点大道至简,大巧若拙的感觉了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375218.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微调及代码

一、微调:迁移学习(transfer learning)将从源数据集学到的知识迁移到目标数据集。 二、步骤 1、在源数据集(例如ImageNet数据集)上预训练神经网络模型,即源模型。 2、创建一个新的神经网络模型&#xff…

python基础篇(9):模块

1 模块简介 Python 模块(Module),是一个 Python 文件,以 .py 结尾. 模块能定义函数,类和变量,模块里也能包含可执行的代码. 模块的作用: python中有很多各种不同的模块, 每一个模块都可以帮助我们快速的实现一些功能, 比如实现…

概论(二)随机变量

1.名词解释 1.1 样本空间 一次具体实验中所有可能出现的结果,构成一个样本空间。 1.2 随机变量 把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自…

SpringBoot实战:轻松实现接口数据脱敏

一、接口数据脱敏概述 1.1 接口数据脱敏的定义 接口数据脱敏是Web应用程序中一种保护敏感信息不被泄露的关键措施。在API接口向客户端返回数据时,系统会对包含敏感信息(如个人身份信息、财务数据等)的字段进行特殊处理。这种处理通过应用特…

多个版本JAVA切换(学习笔记)

多个版本JAVA切换 很多时候,我们电脑上会安装多个版本的java版本,java8,java11,java17等等,这时候如果想要切换java的版本,可以按照以下方式进行 1.检查当前版本的JAVA 同时按下 win r 可以调出运行工具…

WMS系统的核心功能

WMS系统(Warehouse Management System)的核心功能主要包括以下几个方面: ———————————————————————— 1、库存管理: 1):跟踪库存数量、位置和状态,确保实时库存可见性。 2):支持批次管理、序列…

文心快码——百度研发编码助手

介绍 刚从中国互联网大会中回来,感受颇深吧。百度的展商亮相了文心快码,展商人员细致的讲解让我们一行了解到该模型的一些优点。首先,先来简单介绍一下文心快码吧。 文心快码(ERNIE Code)是百度公司推出的一个预训练…

【STM32标准库】读写内部FLASH

1.内部FLASH的构成 STM32F407的内部FLASH包含主存储器、系统存储器、OTP区域以及选项字节区域。 一般我们说STM32内部FLASH的时候,都是指这个主存储器区域,它是存储用户应用程序的空间。STM32F407ZGT6型号芯片, 它的主存储区域大小为1MB。其…

ppt翻译免费怎么做?5个方法让你秒懂PPT的内容

当你收到一份来自海外的PPT资料,眼前或许是一片陌生的语言海洋,但别让这成为理解与灵感之间的障碍。 这时,一款优秀的PPT翻译软件就如同你的私人导航员,能迅速将这份知识宝藏转化为你熟悉的语言,让每一个图表、每一段…

Unity引擎制作玻璃的反射和折射效果

Unity引擎制作玻璃球玻璃杯 大家好,我是阿赵。   之前做海面效果的时候,没做反射和折射的效果,因为我觉得过于复杂的效果没有太大的实际作用。这方面的效果,我就做了现在这个例子来补充一下。 在这个demo场景里面,我…

社交媒体数据分析:赋能企业营销策略的利器

一、数据:未来的石油与导航仪 在数字化转型的大潮中,数据已成为推动企业发展的新燃料。它不仅是决策的依据,更是预见未来的水晶球。特别是在社交媒体这片广袤的海洋里,每一条帖子、每一次点赞、评论都蕴藏着消费者的偏好、市场的…

thinkphp8框架源码精讲

前言 很开心你能看到这个笔记,相信你对thinkphp是有一定兴趣的,正好大家都是志同道合的人。 thinkphp是我入门学习的第一个框架,经过这么多年了,还没好好的研究它,今年利用了空闲的时间狠狠的深入源码学习了一把&…

Proteus + Keil单片机仿真教程(五)多位LED数码管的静态显示

Proteus + Keil单片机仿真教程(五)多位LED数码管 上一章节讲解了单个数码管的静态和动态显示,这一章节将对多个数码管的静态显示进行学习,本章节主要难点: 1.锁存器的理解和使用; 2.多个数码管的接线封装方式; 3.Proteus 快速接头的使用。 第一个多位数码管示例 元件…

Qt学生管理系统(付源码)

Qt学生管理系统 一、前言1.1 项目介绍1.2 项目目标 2、需求说明2.1 功能性说明2.2 非功能性说明 三、UX设计3.1 登录界面3.2 学生数据展示3.3 信息插入和更新 三、架构说明3.1 客户端结构如下3.2 数据流程图3.2.1 数据管理3.2.2 管理员登录 四、 设计说明3.1 数据库设计3.2 结构…

嵌入式要卷成下一个Java了吗?

嵌入式系统与Java的关系在技术发展和市场需求的影响下在逐步演变,但尚未达到完全替代的阶段。我收集归类了一份嵌入式学习包,对于新手而言简直不要太棒,里面包括了新手各个时期的学习方向编程教学、问题视频讲解、毕设800套和语言类教学&…

system V共享内存【Linux】

文章目录 原理shmgetftokshmat(share memory attach)shmdt,去关联(share memory delete attach)shmctl ,删除共享内存共享内存与管道 原理 共享内存本质让不同进程看到同一份资源。 申请共享内存: 1、操作系统在物理内存当中申请…

【鸿蒙学习笔记】通过用户首选项实现数据持久化

官方文档:通过用户首选项实现数据持久化 目录标题 使用场景第1步:源码第2步:启动模拟器第3步:启动entry第6步:操作样例2 使用场景 Preferences会将该数据缓存在内存中,当用户读取的时候,能够快…

从2024上半年《人工智能现状报告》看GPU前世今生

前不久,全球领先的低代码平台Retool发布了最新的2024上半年《人工智能现状报告》,这份报告收集了约750名技术人员的意见,包括开发者、数据团队和各行业的领导者。报告通过调研人们对AI产生的情绪变化、AI应用现状、AI使用率等等几个方面总结了…

上海慕尼黑电子展开展,启明智显携物联网前沿方案亮相

随着科技创新的浪潮不断涌来,上海慕尼黑电子展在万众瞩目中盛大开幕。本次展会汇聚了全球顶尖的电子产品与技术解决方案,成为业界瞩目的焦点。启明智显作为物联网彩屏显示领域的佼佼者携产品亮相展会,为参展者带来了RTOS、LINUX全系列方案及A…

HTML 基础

文章目录 HTML 结构认识 HTML 标签HTML 文件基本结构快速生成代码框架 HTML 常见标签注释标签标题标签: h1-h6段落标签: p换行标签: br格式化标签图片标签: img超链接标签: a表格标签列表标签表单标签form 标签input 标签 label 标签select 标签textarea 标签无语义标签: div &…