Java数据结构-链表与LinkedList

链表

链表的概念

链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序是通过链表中的引用链接次序实现的。

通俗来说,相比较于顺序表(物理上连续,逻辑上也连续),链表物理上不一定连续。

链表是由一个一个节点组织起来的,组织起来的整体就叫做链表。

链表的结构非常多样,

1.单向或双向

2.带头或不带头

3.循环或非循环

以上的链表结构可以组成八种链表。

在Java集合框架中的LinkedList底层实现的是无头双向循环链表

LinkedList模拟实现

1.创建一个无头双向链表,并标志头结点个尾结点。

static class ListNode {public int val;public ListNode prev;//前驱public ListNode next;//后继public ListNode(int val) {this.val = val;}}public ListNode head;//标志头节点public ListNode last;//标志尾结点
2.计算双向链表的长度:

从head开始遍历节点到尾结点,并定义一个变量count计数。

public int size(){int count = 0;ListNode cur = head;while (cur != null) {count++;cur = cur.next;}return count;}

这里有一个问题,为什么遍历的条件是(cur!=null)?而不是(cur.next!=null)?

我们可以知道,此链表的尾结点next位置存的是null,如果以(cur.next!=null)作为判断条件,

那么当执行完循环中最后一条语句“cur = cur.next;”时,此时由于尾结点的next为空,所以会跳出循环,相当于count少进行了一次计数,那么最终的count值就是错误的。

3.查找是否包含关键字key在链表中
public boolean contains(int key){ListNode cur = head;while (cur != null) {if(cur.val == key) {return true;}cur = cur.next;}return false;}
4.头插法

关键步骤:

        node.next = head;

        head.prev = node;

        head = node;

public void addFirst(int data){ListNode node = new ListNode(data);if(head == null) {//是不是第一次插入节点head = last = node;}else {node.next = head;head.prev = node;head = node;}}
5.尾插法:

关键步骤:

        last.next = node;

        node.prev = last;

        last = last.next;

public void addLast(int data){ListNode node = new ListNode(data);if(head == null) {//是不是第一次插入节点head = last = node;}else {last.next = node;node.prev = last;last = last.next;}}

6.任意位置插入:

关键步骤:

        先记录要插入位置上的节点,记为cur,然后直接修改指向

        node.next = cur;

        cur.prev.next = node;

        node.prev = cur.prev;

        cur.prev = node;

注意:不能修改代码顺序

public void addIndex(int index,int data){try {checkIndex(index);}catch (IndexNotLegalException e) {e.printStackTrace();}//在0位置插入调用头插法if(index == 0) {addFirst(data);return;}//在尾位置插入调用尾插法if(index == size()) {addLast(data);return;}//1. 找到index位置ListNode cur = findIndex(index);ListNode node = new ListNode(data);//2、开始绑定节点node.next = cur;cur.prev.next = node;node.prev = cur.prev;cur.prev = node;}private ListNode findIndex(int index) {ListNode cur = head;while (index != 0) {cur = cur.next;index--;}return cur;}private void checkIndex(int index) {if(index < 0 || index > size()) {throw new IndexNotLegalException("双向链表插入index位置不合法: "+index);}}
7.删除第一次出现关键字为key的节点

关键步骤:

(1)修改前驱指针的next,跳过cur

        cur.prev.next = cur.next;

(2)修改下一个指针的前驱,跳过cur

        cur.next.prev = cur.prev;

public void remove(int key){ListNode cur = head;while (cur != null) {if(cur.val == key) {//开始删除 处理头节点if(cur == head) {head = head.next;if(head != null) {head.prev = null;}else {//head == null 证明只有1个节点last = null;}}else {cur.prev.next = cur.next;if(cur.next == null) {//处理尾巴节点last = last.prev;}else {cur.next.prev = cur.prev;}}return;//删完一个就走}cur = cur.next;}}

8.删除所有值为key的节点

与上一个方法类似,区别是上一个方法删一个之后就退出。

 public void removeAllKey(int key){ListNode cur = head;while (cur != null) {if(cur.val == key) {//开始删除 处理头节点if(cur == head) {head = head.next;if(head != null) {head.prev = null;}else {//head == null 证明只有1个节点last = null;}}else {cur.prev.next = cur.next;if(cur.next == null) {//处理尾巴节点last = last.prev;}else {cur.next.prev = cur.prev;}}}cur = cur.next;}
9.清空链表
public void clear(){ListNode cur = head;while (cur != null) {ListNode curN = cur.next;//cur.val = null;cur.prev = null;cur.next = null;cur = curN;}head = last = null;}

LinkedList

什么是LinkedList?

LinkedList的底层是双向链表结构,由于链表没有将元素存储在连续的空间中,元素存储在单独的节 点中,然后通过引用将节点连接起来了,因此在在任意位置插入或者删除元素时,不需要搬移元素,效率比较高。

LinkedList实现了List接口。

LinkedList没有实现RandomAccess接口,因此不支持随机访问。

LinkedList的任意位置插入和删除元素时效率比较高,时间复杂度为O(1)

LinkedList的构造

方法解释
LinkedList()无参构造
public LinkedList(Collection<? extends E> c)
使用其他集合容器中元素构造list
public static void main(String[] args){ //构造一个空的LinkedListList<Integer> list1 = new LinkedList<>();List<String> list2 = new java.util.ArrayList<>();list2.add("JavaSE");list2.add("JavaWeb");list2.add("JavaEE");//使用ArrayList构造LinkedListList<String> list3 = new LinkedList<>(list2);
}

LinkedList其他常用方法介绍

方法解释
boolean add(E e)
尾插 e
void add(int index, E element)
将 e 插入到 index 位置
boolean addAll(Collection<? extends E> c)
尾插 c 中的元素
E remove(int index)
删除 index 位置元素
boolean remove(Object o)
删除遇到的第一个 o
E get(int index)
获取下标 index 位置元素
E set(int index, E element)
将下标 index 位置元素设置为 element
void clear()
清空
boolean contains(Object o)
判断 o 是否在线性表中
int indexOf(Object o)
返回第一个 o 所在下标
int lastIndexOf(Object o)
返回最后一个 o 的下标
List<E> subList(int fromIndex, int toIndex)
截取部分 list

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375611.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VBA语言専攻T3学员领取资料通知

T3学员领取资料通知0713 各位学员∶本周MF系列VBA技术资料增加646-650讲&#xff0c;T3学员看到通知后请免费领取,领取时间7月12日晚上19:00-7月13日晚上18:00。本次增加内容&#xff1a; MF646:OnKey禁用ShiftCTRL向右键 MF647:每隔一行插入一空行 MF648:取消合并单元格 …

druid(德鲁伊)数据线程池连接MySQL数据库

文章目录 1、druid连接MySQL2、编写JDBCUtils 工具类 1、druid连接MySQL 初学JDBC时&#xff0c;连接数据库是先建立连接&#xff0c;用完直接关闭。这就需要不断的创建和销毁连接&#xff0c;会消耗系统的资源。 借鉴线程池的思想&#xff0c;数据连接池就这么被设计出来了。…

pnpm9.5.0(catalog协议)

catalog(目录协议) 目录是工作区功能&#xff0c;用于将依赖版本范围定义为可重用常量&#xff0c;目录中定义的常量可以在package.json中使用&#xff0c; 结合 pnpm-workspace.yaml使用 定义pnpm-workspace.yaml packages&#xff1a;定义多仓库 packages:- packages/*cata…

docker(六)--创建镜像

六、创建镜像 1.创建镜像两种方式 方式1&#xff1a; 更新镜像 docker commit 方式2&#xff1a;构建镜像 docker build 2.更新镜像 1&#xff09;用法 docker commit -m“描述信息” -a作者 容器id或者容器名 镜像名:tag 2&#xff09;步骤 ①根据镜像运行容器 ②进入容…

飞睿智能无线高速uwb安全数据传输模块,低功耗、抗干扰超宽带uwb芯片传输速度技术新突破

在信息化的时代&#xff0c;数据传输的速度和安全性无疑是每个企业和个人都极为关注的话题。随着科技的飞速发展&#xff0c;超宽带&#xff08;Ultra-Wideband&#xff0c;简称UWB&#xff09;技术凭借其性能和广泛的应用前景&#xff0c;逐渐成为了数据传输领域的新星。今天&…

Android高级——Logger日志系统

Logger日志系统 Logger日志系统是基于内核中的Logger日志驱动程序实现将日志记录保存在内核空间中使用一个环形缓冲区来保存日志&#xff0c;满了之后&#xff0c;新的日志就会覆盖旧的日志 日志类型 main&#xff0c;记录应用程序级别system&#xff0c;记录系统级别radio&…

实验3-Spark基础-Spark的安装

文章目录 1. 下载安装 Scala1.1 下载 Scala 安装包1.2 基础环境准备1.3 安装 Scala 2. 下载安装 Spark2.1 下载 Spark 安装包2.2 安装 Spark2.3 配置 Spark2.4 创建配置文件 spark-env.sh 3. pyspark 启动4. 建立/user/spark文件夹 1. 下载安装 Scala 1.1 下载 Scala 安装包 下…

Hi3861鸿蒙开发环境搭建

1.1 安装配置Visual Studio Code 打开Download Visual Studio Code - Mac, Linux, Windows选择下载安装Windows系统的Visual Studio Code。 下载后进行安装。Visual Studio Code安装完成后&#xff0c;通过内置的插件市场搜索并安装开发所需的插件如图所示&#xff1a; 1.2 安…

轻松创建对象——简单工厂模式(Java实现)

1. 引言 大家好&#xff0c;又见面了&#xff01;在上一篇文章中&#xff0c;我们通过Python示例介绍了简单工厂模式&#xff0c;今天&#xff0c;我们继续深入这个话题&#xff0c;用Java来实现简单工厂模式。 2. 什么是简单工厂模式 简单工厂模式&#xff08;Simple Facto…

视频融合共享平台视频共享融合赋能平台数字化升级医疗体系

在当前&#xff0c;医疗健康直接关系到国计民生&#xff0c;然而&#xff0c;由于医疗水平和资源分布不均&#xff0c;以及信息系统老化等问题&#xff0c;整体医疗服务能力和水平的提升受到了限制。视频融合云平台作为数字医疗发展的关键推动力量&#xff0c;在医疗领域的广泛…

计算机网络知识汇总

OSI七层模型 七层模型一般指开放系统互连参考模型&#xff0c;开放系统互连参考模型 &#xff08;Open System Interconnect 简称OSI&#xff09;&#xff0c;OSI参考模型是具有7个层次的框架&#xff0c;自底向上的7个层次分别是物理层、数据链路层、网络层、传输层、会话层、…

省市县下拉框的逻辑以及多表联查的实例

2024.7.12 一. 省市县的逻辑开发。1、准备&#xff1a;1.1. 要求&#xff1a;1.2 数据库表&#xff1a; 2. 逻辑&#xff1a;3. 方法3.1 创建实体类3.2 数据访问层3.3 实现递归方法3.4 控制器实现3.5 前端处理 二、多表联查&#xff08;给我干红温了&#xff09;1. 出现了问题2…

python进阶(5):魔术方法篇(1)

之前使用的__init__ 构造方法&#xff0c;是Python类内置的方法之一。 这些内置的类方法&#xff0c;各自有各自特殊的功能&#xff0c;这些内置方法我们称之为&#xff1a;魔术方法 1 __str__ 字符串方法 class Student:name Noneage Nonetel Nonedef __init__(self,name…

shell脚本之if/case语句

一、条件测试 1、1 返回码 $? $? :返回码&#xff0c;用来判断命令或者脚本是否执行成功。 0 &#xff1a;表示true &#xff0c;成功&#xff1b;非0 则表示flase &#xff0c;失败。 1、2 test命令 可以进行条件测试&#xff0c;然后根据返回值来判断条件是否成立 -e…

Redis基础教程(十五):Redis GEO地理信息查询与管理

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

怎么提高音频的播放速度?可以提高音频播放速度的四种方法推荐

怎么提高音频的播放速度&#xff1f;提高音频的播放速度是一种有效的策略&#xff0c;可以显著节省时间和提升信息获取的效率。随着信息量不断增加和学习需求的多样化&#xff0c;快速播放音频已成为许多人在日常生活和工作中的常见做法。这种方法不仅可以用于提高学习效率&…

Git-Unity项目版本管理

目录 准备GitHub新建项目并添加ssh密钥Unity文件夹 本文记录如何用git对unity 项目进行版本管理&#xff0c;并可传至GitHub远端。 准备 名称版本windows11Unity2202.3.9.f1gitN.A.githubN.A. GitHub新建项目并添加ssh密钥 GitHub新建一个repositorywindows11 生成ssh-key&…

全志A527 T527 android13支持usb摄像头

1.前言 我们发现usb摄像头在A527 android13上面并不能正常使用,需要支持相关的摄像头。 2.系统节点查看 我们查看系统是否有相关的节点生成,发现/dev/video相关的节点已经生成了。并没有问题,拔插正常。 3.这里我们需要查看系统层是否支持相关的相机, 我们使用命令进行…

详解yolov5的网络结构

转载自文章 网络结构图&#xff08;简易版和详细版&#xff09; 此图是博主的老师&#xff0c;杜老师的图 网络框架介绍 前言&#xff1a; YOLOv5是一种基于轻量级卷积神经网络&#xff08;CNN&#xff09;的目标检测算法&#xff0c;整体可以分为三个部分&#xff0c; ba…

警钟!电池储能安全事故频发!物联网技术如何加强储能安全排查?

在新能源时代背景下&#xff0c;储能系统作为能源转型的关键支撑技术&#xff0c;其安全问题日益凸显&#xff0c;尤其是近期海外电池项目连续发生的事故&#xff0c;为全球储能行业敲响了警钟。面对这一挑战&#xff0c;物联网技术以其强大的数据采集、智能分析与远程监控能力…