使用机器学习 最近邻算法(Nearest Neighbors)进行点云分析 (scikit-learn Open3D numpy)

使用 NearestNeighbors 进行点云分析

在数据分析和机器学习领域,最近邻算法(Nearest Neighbors)是一种常用的非参数方法。它广泛应用于分类、回归和聚类分析等任务。下面将介绍如何使用 scikit-learn 库中的 NearestNeighbors 类来进行点云数据的处理,并通过 Open3D 库进行可视化展示。

在这里插入图片描述

最近邻算法简介

最近邻算法是一种基于距离的算法,它通过计算数据点之间的距离来查找给定数据点的最近邻居。常用的距离度量包括欧氏距离、曼哈顿距离和余弦相似度等。最近邻算法的优点在于简单易懂且无需假设数据的分布形式,适用于各种类型的数据。

代码示例

使用 NearestNeighbors 查找点云数据的最近邻,并使用 Open3D 进行可视化。

在这里插入图片描述

步骤一:导入必要的库
import open3d as o3d
import numpy as np
from sklearn.neighbors import NearestNeighbors
import time
步骤二:定义函数来创建点与点之间的连接线
def create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0]):if len(points) < 2:return Nonestart_time = time.time()neighbors = NearestNeighbors(n_neighbors=k_neighbors)neighbors.fit(points)distances, indices = neighbors.kneighbors(points)end_time = time.time()print(f"Nearest neighbors computation time: {end_time - start_time:.4f} seconds")start_time = time.time()lines = []for i in range(len(points)):for j in indices[i]:if i < j:  # 避免重复的线lines.append([i, j])end_time = time.time()print(f"Line creation time: {end_time - start_time:.4f} seconds")colors = [color for i in range(len(lines))]line_set = o3d.geometry.LineSet()line_set.points = o3d.utility.Vector3dVector(points)line_set.lines = o3d.utility.Vector2iVector(lines)line_set.colors = o3d.utility.Vector3dVector(colors)return line_set
步骤三:加载点云数据

使用点云数据文件 .pcd 的内容。

pcd_file = """\
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 28
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 28
DATA ascii
0.301945 -0.1810271 1.407832
0.3025161 -0.1733161 1.322455
0.3003909 -0.167791 1.717239
0.2926154 -0.1333728 1.246899
0.2981626 -0.1311488 1.376031
0.300947 -0.1268353 1.719725
0.2944916 -0.1170874 1.545582
0.3008177 -0.09701672 1.395218
0.2989618 -0.08497152 1.699149
0.3039065 -0.07092351 1.32867
0.3031552 -0.05290076 1.509094
0.2906472 0.02252534 1.617192
0.2972519 0.02116165 1.457043
0.3024158 0.02067187 1.402361
0.2987708 0.01975626 1.286629
0.3014581 0.06462696 1.304869
0.289153 0.1107126 1.859879
0.2879259 0.1625713 1.583842
0.2952633 0.1989845 1.431798
0.3078183 -0.1622952 1.816048
0.3001072 -0.147239 1.970708
0.2990342 -0.1194922 1.950798
0.2979593 -0.09225944 1.931052
0.2929263 0.02492997 1.965327
0.3061717 0.1117098 1.621875
0.3004842 0.03407142 1.999085
0.3023082 -0.1527775 1.553968
0.3008434 0.250506 1.55337
"""# 解析点云数据
lines = pcd_file.strip().split("\n")
points = []
for line in lines[11:]:points.append([float(value) for value in line.split()])
points = np.array(points)
步骤四:创建连接线并进行可视化
# 创建连接线并进行可视化
line_set = create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0])
o3d.visualization.draw_geometries([line_set])

结论

以上展示了如何使用 scikit-learn 中的 NearestNeighbors 类来计算点云数据的最近邻,并使用 Open3D 库将结果进行可视化。这种方法可以用于点云数据的分析、物体检测以及3D建模等多个领域。

完整代码

import open3d as o3d
import numpy as np
from sklearn.neighbors import NearestNeighbors
import timedef create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0]):if len(points) < 2:return Nonestart_time = time.time()neighbors = NearestNeighbors(n_neighbors=k_neighbors)neighbors.fit(points)distances, indices = neighbors.kneighbors(points)end_time = time.time()print(f"Nearest neighbors computation time: {end_time - start_time:.4f} seconds")start_time = time.time()lines = []for i in range(len(points)):for j in indices[i]:if i < j:  # avoid duplicate lineslines.append([i, j])end_time = time.time()print(f"Line creation time: {end_time - start_time:.4f} seconds")colors = [color for i in range(len(lines))]line_set = o3d.geometry.LineSet()line_set.points = o3d.utility.Vector3dVector(points)line_set.lines = o3d.utility.Vector2iVector(lines)line_set.colors = o3d.utility.Vector3dVector(colors)return line_set# Load point cloud data from a .pcd file
pcd_file = """\
VERSION 0.7
FIELDS x y z
SIZE 4 4 4
TYPE F F F
COUNT 1 1 1
WIDTH 28
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 28
DATA ascii
0.301945 -0.1810271 1.407832
0.3025161 -0.1733161 1.322455
0.3003909 -0.167791 1.717239
0.2926154 -0.1333728 1.246899
0.2981626 -0.1311488 1.376031
0.300947 -0.1268353 1.719725
0.2944916 -0.1170874 1.545582
0.3008177 -0.09701672 1.395218
0.2989618 -0.08497152 1.699149
0.3039065 -0.07092351 1.32867
0.3031552 -0.05290076 1.509094
0.2906472 0.02252534 1.617192
0.2972519 0.02116165 1.457043
0.3024158 0.02067187 1.402361
0.2987708 0.01975626 1.286629
0.3014581 0.06462696 1.304869
0.289153 0.1107126 1.859879
0.2879259 0.1625713 1.583842
0.2952633 0.1989845 1.431798
0.3078183 -0.1622952 1.816048
0.3001072 -0.147239 1.970708
0.2990342 -0.1194922 1.950798
0.2979593 -0.09225944 1.931052
0.2929263 0.02492997 1.965327
0.3061717 0.1117098 1.621875
0.3004842 0.03407142 1.999085
0.3023082 -0.1527775 1.553968
0.3008434 0.250506 1.55337
"""# Parse the point cloud data
lines = pcd_file.strip().split("\n")
points = []
for line in lines[11:]:points.append([float(value) for value in line.split()])
points = np.array(points)# Create lines from points and visualize
line_set = create_lines_from_points(points, k_neighbors=6, color=[0, 1, 0])
o3d.visualization.draw_geometries([line_set])

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376465.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端JS特效第33波:jQuery旋转木马焦点图轮播插件PicCarousel

jQuery旋转木马焦点图轮播插件PicCarousel&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下&#xff1a; <!doctype html> <html> <head> <meta charset"utf-8"> <meta http-equiv"X-UA-Compatible" content"IE…

FLinkCDC引起的生产事故(二)

背景&#xff1a; 最近在做实时数据的抽取工作&#xff0c;利用FLinkCDC实时抽取目标库Oracle的数据到Doris中&#xff0c;但是在抽取的过程中&#xff0c;会导致目标库的生产库数据库非常卡顿&#xff0c;为了避免对生产环境的数据库造成影响&#xff0c;对生产环境的数据库利…

element UI时间组件两种使用方式

加油&#xff0c;新时代打工&#xff01; 组件官网&#xff1a;https://element.eleme.cn/#/zh-CN/component/date-picker 先上效果图&#xff0c;如下&#xff1a; 第一种实现方式 <div class"app-container"><el-formref"submitForm":model&q…

11计算机视觉—语义分割与转置卷积

目录 1.语义分割应用语义分割和实例分割2.语义分割数据集:Pascal VOC2012 语义分割数据集预处理数据:我们使用图像增广中的随机裁剪,裁剪输入图像和标签的相同区域。3.转置卷积 上采样填充、步幅和多通道填充步幅多通道转置卷积是一种卷积:重新排列输入和核转置卷积是一种卷…

机器学习筑基篇,Jupyter Notebook 精简指南

[ 知识是人生的灯塔&#xff0c;只有不断学习&#xff0c;才能照亮前行的道路 ] 0x00 Jupyter Notebook 简明指南 描述&#xff1a;前面我们已经在机器学习工作站&#xff08;Ubuntu 24.04 Desktop Geforce RTX 4070Ti SUPER&#xff09;中安装 Anaconda 工具包&#xff0c;其…

Linux介绍与常用命令详解

目录 一、Linux概述 1.Linux发行版 2.Linux目录结构 二、Linux特点 三、Linux用途 四、Linux常用的命令 1.cd指令&#xff08;跳转位置&#xff09; 2.显示目录文件 3.对文件进行操作 4.rm指令&#xff08;删除文件夹指令&#xff09; 5.mv指令 6.查看文件命令 7.进程命令…

机器学习(五) -- 监督学习(6) --逻辑回归

系列文章目录及链接 上篇&#xff1a;机器学习&#xff08;五&#xff09; -- 监督学习&#xff08;5&#xff09; -- 线性回归2 下篇&#xff1a;机器学习&#xff08;五&#xff09; -- 监督学习&#xff08;7&#xff09; --SVM1 前言 tips&#xff1a;标题前有“***”的内…

LLM——langchain 与阿里 DashScop (通义千问大模型) 和 DashVector(向量数据库) 结合使用总结

文章目录 前言预览直接调用大模型使用 prompt template格式化输出使用上下文 RAG 增强检索 自定义 langchain AgentPromptTemplate 和 ChatPromptTemplate使用少量示例创建ChatPromptTemplate 前言 langchain 是一个面向大模型开发的框架&#xff0c;其中封装了很多核心组件&a…

基于lstm的股票Volume预测

LSTM&#xff08;Long Short-Term Memory&#xff09;神经网络模型是一种特殊的循环神经网络&#xff08;RNN&#xff09;&#xff0c;它在处理长期依赖关系方面表现出色&#xff0c;尤其适用于时间序列预测、自然语言处理&#xff08;NLP&#xff09;和语音识别等领域。以下是…

【算法】平衡二叉树

难度&#xff1a;简单 题目 给定一个二叉树&#xff0c;判断它是否是 平衡二叉树 示例&#xff1a; 示例1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;true 示例2&#xff1a; 输入&#xff1a;root [1,2,2,3,3,null,null,4,4] 输出&…

html表格账号密码备忘录:表格内容将通过JavaScript动态生成。点击查看密码10秒关闭

<!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><title>账号密码备忘录</title><style>body {background: #2c3e50;text-shadow: 1px 1px 1px #100000;}/* 首页样式开始 */.home_page {color: …

Excel第31享:基于left函数的截取式数据裂变

1、需求描述 如下图所示&#xff0c;在“Excel第30享”中统计2022年YTD各个人员的“上班工时&#xff08;a2&#xff09;”&#xff0c;需要基于工时明细表里的“日期”字段建立辅助列&#xff0c;生成“年份”字段&#xff0c;本文说明“年份”字段是怎么裂变而来的。 下图为…

AI时代:探索个人潜能的新视角

文章目录 Al时代的个人发展1 AI的高速发展意味着什么1.1 生产力大幅提升1.2 生产关系的改变1.3 产品范式1.4 产业革命1.5 Al的局限性1.5.1局限一:大模型的幻觉 1.5.2 局限二&#xff1a;Token 2 个体如何应对这种改变?2.1 职场人2.2 K12家长2.3 大学生2.4 创业者 3 人工智能发…

单相整流-TI视频课笔记

目录 1、单相半波整流 1.1、单相半波----电容滤波---超轻负载 1.2、单相半波----电容滤波---轻负载 1.3、单相半波----电容滤波---重负载 2、全波整流 2.1、全波整流的仿真 2.2、半波与全波滤波的对比 3、全桥整流电路 3.1、全波和全桥整流对比 3.2、半波全波和全桥…

高职计算机网络实训室

一、高职计算机网络实训室建设的背景 如今&#xff0c;数字化发展已成为国家发展的战略方向&#xff0c;是推动社会进步和经济发展的重要动力。在这一时代背景下&#xff0c;计算机网络技术作为数字化发展的基础设施&#xff0c;其地位和作用愈发凸显。因此&#xff0c;高职院…

数据结构(空间复杂度介绍)超详细!!!

1. 数据结构前言 1.1 数据结构 数据结构是计算机存储、组织数据的形式&#xff0c;指相互之间存在一种或多种特定关系的数据元素的集合 1.2 算法 算法&#xff1a;良好的计算过程&#xff0c;它取一个或一组的值为输入&#xff0c;并产生出一个或一组的值作为输出。即算法经…

UART编程

Q:为什么使用串口前要先在电脑上安装CH340驱动&#xff1f; 中断的作用&#xff1f; 环形buffer的作用&#xff1f; static和valitate的作用 三种编程方式简介 也可以通过DMA方式减小CPU资源的消耗 直接把数据在SRAM内存和UART模块进行传输 &#xff0c;流程&#xff1a; …

css文字自适应宽度动态出现省略号...

前言 在列表排行榜中通常会出现的一个需求&#xff1a;从左到右依次是名次、头像、昵称、徽标、分数。徽标可能会有多个或者没有徽标&#xff0c;徽标长度是动态的&#xff0c;昵称如果过长要随着有无徽标进行动态截断出现省略号。如下图布局所示&#xff08;花里胡哨的底色是…

接口安全配置

问题点&#xff1a; 有员工在工位在某个接口下链接一个集线器&#xff0c;从而扩展上网接口&#xff0c;这种行为在某些公司是被禁止的&#xff0c;那么网络管理员如何控制呢&#xff1f;可以配置接口安全来限制链接的数量&#xff0c;切被加入安全的mac地址不会老化&#xff…

防火墙NAT智能选举综合实验

一、实验目的 1&#xff0c;办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 2&#xff0c;分公司设备可以通过总公司的移动链路和电信链路访问到Dmz区的http服务器 3&#xff0c;多出口环境基于带宽比例进行选路&…