人工智能算法工程师(中级)课程4-sklearn机器学习之回归问题与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程4-sklearn机器学习之回归问题与代码详解。回归分析是统计学和机器学习中的一种重要方法,用于研究因变量和自变量之间的关系。在机器学习中,回归算法被广泛应用于预测分析、趋势分析等领域。本文将介绍sklearn机器学习库中的一些常用回归算法,包括线性回归、Lasso回归、岭回归、多任务岭回归、核岭回归以及SVM-SVR模型。我们将分别介绍这些算法的数学原理和公式,并配套完整可运行代码。

文章目录

  • sklearn机器学习中的回归介绍与代码详解
    • 1. 线性回归
      • 线性回归的数学原理
      • 线性回归的代码实现
    • 2. Lasso回归和岭回归
      • Lasso回归和岭回归的数学原理
      • Lasso回归和岭回归的代码实现
    • 3. 多任务岭回归
      • 多任务岭回归的数学原理
      • 多任务岭回归的代码实现
    • 4. 核岭回归
      • 核岭回归的数学原理
      • 核岭回归的代码实现
    • 5. SVM-SVR模型
      • SVM-SVR模型的数学原理
      • SVM-SVR模型的代码实现
    • 总结

在这里插入图片描述

sklearn机器学习中的回归介绍与代码详解

1. 线性回归

线性回归是最简单的回归算法,它假设因变量和自变量之间存在线性关系。线性回归的目标是找到一条直线,使得所有数据点到这条直线的距离之和最小。这个目标可以通过最小二乘法来实现。

线性回归的数学原理

线性回归的模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n + ε y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \cdots + \beta_nx_n + \varepsilon y=β0+β1x1+β2x2++βnxn+ε
其中, y y y是因变量, x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn是自变量, β 0 , β 1 , … , β n \beta_0, \beta_1, \ldots, \beta_n β0,β1,,βn是模型参数, ε \varepsilon ε是误差项。
最小二乘法的目标是最小化误差平方和:
J ( β ) = ∑ i = 1 m ( y i − y ^ i ) 2 = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 J(\beta) = \sum_{i=1}^{m}(y_i - \hat{y}_i)^2 = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 J(β)=i=1m(yiy^i)2=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2
其中, m m m是样本数量, y i y_i yi是第 i i i个样本的因变量值, y ^ i \hat{y}_i y^i是第 i i i个样本的预测值。

线性回归的代码实现

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
# 生成模拟数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 * X[:, 0] + 1 + np.random.randn(100) * 0.05
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: ", mse)

2. Lasso回归和岭回归

Lasso回归和岭回归是两种常用的正则化线性回归算法。它们在普通线性回归的基础上加入了正则化项,以避免过拟合问题。

Lasso回归和岭回归的数学原理

Lasso回归的模型可以表示为:
J ( β ) = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 + α ∑ j = 1 n ∣ β j ∣ J(\beta) = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 + \alpha \sum_{j=1}^{n}|\beta_j| J(β)=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2+αj=1nβj
岭回归的模型可以表示为:
J ( β ) = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 + α ∑ j = 1 n β j 2 J(\beta) = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 + \alpha \sum_{j=1}^{n}\beta_j^2 J(β)=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2+αj=1nβj2
其中, α \alpha α是正则化参数。
在这里插入图片描述

Lasso回归和岭回归的代码实现

from sklearn.linear_model import Lasso, Ridge
# 创建Lasso回归模型
lasso_model = Lasso(alpha=0.1)
# 创建岭回归模型
ridge_model = Ridge(alpha=0.1)
# 训练模型
lasso_model.fit(X_train, y_train)
ridge_model.fit(X_train, y_train)
# 预测
lasso_pred = lasso_model.predict(X_test)
ridge_pred = ridge_model.predict(X_test)
# 评估模型
lasso_mse = mean_squared_error(y_test, lasso_pred)
ridge_mse = mean_squared_error(y_test, ridge_pred)
print("Lasso mean squared error: ", lasso_mse)
print("Ridge mean squared error: ", ridge_mse)

3. 多任务岭回归

多任务岭回归是岭回归的扩展,用于同时解决多个回归问题。这些问题通常是相关的,因此共享相同的特征空间,但有不同的目标值。

多任务岭回归的数学原理

多任务岭回归的目标是最小化以下目标函数:
J ( B ) = 1 2 n ∑ i = 1 n ∥ y i − X i B ∥ 2 2 + α 2 ∑ j = 1 k ∥ B j ∥ 2 2 J(\mathbf{B}) = \frac{1}{2n} \sum_{i=1}^{n} \left\| \mathbf{y}_i - \mathbf{X}_i \mathbf{B} \right\|^2_2 + \frac{\alpha}{2} \sum_{j=1}^{k} \left\| \mathbf{B}_j \right\|^2_2 J(B)=2n1i=1nyiXiB22+2αj=1kBj22
其中, B \mathbf{B} B是一个 p × k p \times k p×k的系数矩阵, p p p是特征数量, k k k是任务数量, y i \mathbf{y}_i yi是第 i i i个任务的因变量向量, X i \mathbf{X}_i Xi是第 i i i个任务的自变量矩阵, α \alpha α是正则化参数。

多任务岭回归的代码实现

from sklearn.linear_model import MultiTaskLasso
# 假设我们有两个任务回归任务
X = np.random.rand(100, 10)
y = np.random.rand(100, 2)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建多任务岭回归模型
multi_task_lasso = MultiTaskLasso(alpha=0.1)
# 训练模型
multi_task_lasso.fit(X_train, y_train)
# 预测
multi_task_pred = multi_task_lasso.predict(X_test)
# 评估模型
multi_task_mse = mean_squared_error(y_test, multi_task_pred)
print("Multi Task Lasso mean squared error: ", multi_task_mse)

4. 核岭回归

核岭回归是非线性回归方法,它使用核技巧将数据映射到高维空间,然后维空间中进行线性回归。

核岭回归的数学原理

核岭回归的目标函数为表示为:
J ( w ) = 1 2 n ∥ K w − y ∥ 2 2 + α 2 w T w J(\mathbf{w}) = \frac{1}{2n} \left\| \mathbf{K} \mathbf{w} - \mathbf{y} \right\|^2_2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} J(w)=2n1Kwy22+2αwTw
其中, K \mathbf{K} K是核矩阵, w \mathbf{w} w是权重向量, y \mathbf{y} y是因变量向量, α \alpha α是正则化参数。

核岭回归的代码实现

from sklearn.kernel_ridge import KernelRidge
# 创建核岭回归模型
kernel_ridge = KernelRidge(kernel='rbf', alpha=1.0)
# 训练模型
kernel_ridge.fit(X_train, y_train.ravel())
# 预测
kernel_ridge_pred = kernel_ridge.predict(X_test)
# 评估模型
kernel_ridge_mse = mean_squared_error(y_test, kernel_ridge_pred)
print("Kernel Ridge mean squared error: ", kernel_ridge_mse)

5. SVM-SVR模型

支持向量回归(SVR)是支持向量机(SVM)在回归问题上的应用。SVR的目标是找到一个最优的超平面,使得所有数据点到这个超平面的距离之和最小。

SVM-SVR模型的数学原理

SVR的目标函数可以表示为:
min ⁡ w , b , ξ , ξ ∗ 1 2 ∥ w ∥ 2 + C ∑ i = 1 n ( ξ i + ξ i ∗ ) \min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*) w,b,ξ,ξmin21w2+Ci=1n(ξi+ξi)
约束条件为:
y i − w T ϕ ( x i ) − b ≤ ε + ξ i w T ϕ ( x i ) + b − y i ≤ ε + ξ i ∗ ξ i , ξ i ∗ ≥ 0 \begin{align*} y_i - \mathbf{w}^T \phi(\mathbf{x}_i) - b &\leq \varepsilon + \xi_i \\ \mathbf{w}^T \phi(\mathbf{x}_i) + b - y_i &\leq \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* &\geq 0 \end{align*} yiwTϕ(xi)bwTϕ(xi)+byiξi,ξiε+ξiε+ξi0
其中, w \mathbf{w} w是权重向量, b b b是偏置项, ϕ ( x i ) \phi(\mathbf{x}_i) ϕ(xi)是将输入向量映射到高维空间的函数, ξ \xi ξ ξ ∗ \xi^* ξ是松弛变量, C C C是惩罚参数, ε \varepsilon ε是容忍误差。

SVM-SVR模型的代码实现

from sklearn.svm import SVR
# 创建SVR模型
svr = SVR(kernel='rbf', C=1.0, epsilon=0.1)
# 训练模型
svr.fit(X_train, y_train.ravel())
# 预测
svr_pred = svr.predict(X_test)
# 评估模型
svr_mse = mean_squared_error(y_test, svr_pred)
print("SVR mean squared error: ", svr_mse)

总结

本文给大家展示了线性回归、Lasso回归、岭回归、多任务岭回归、核岭回归以及SVM-SVR模型在sklearn库中的实现。每个模型都包括了模型的创建、训练、预测和评估过程。在实际应用中,您需要根据具体问题选择合适的模型,并通过调整模型参数来优化模型性能。
sklearn库为各种回归算法提供了方便的接口,使得在Python中进行回归分析变得简单高效。通过理解和实践这些算法,您可以更好地解决实际问题,并在机器学习领域取得更好的成果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376663.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么? CSS 将支持 if() 函数了?

CSS Working Group 简称 CSSWG, 在近期的会议中决定将 if() 添加到 CSS Values Module Level 5 中。 详情可见:css-meeting-bot 、[css-values] if() function 当我看到这个消息的时候,心中直呼这很逆天了,我们知道像 less 这些 css 这些预…

前端Vue组件化实践:打造自定义等宽tabs标签组件

在前端开发的世界里,随着业务复杂度的提升和需求的多样化,传统的整体式开发方式已经难以满足快速迭代和高效维护的需求。组件化开发作为一种重要的解决方案,正逐渐受到广大开发者的青睐。本文将结合Vue框架,探讨如何通过组件化开发…

【调试笔记-20240713-Windows-Tauri 多个HTML页面支持】

调试笔记-系列文章目录 调试笔记-20240713-Windows-Tauri 多个HTML页面支持 文章目录 调试笔记-系列文章目录调试笔记-20240713-Windows-Tauri 多个HTML页面支持 前言一、调试环境操作系统:Windows 10 专业版调试环境调试目标 二、调试步骤搜索相似问题 三、应用场…

BUCK电源芯片,电气参数,极限参数,工作特性,引脚功能

概述 在应用DC-DC开关电源芯片时,通常需要关注以下参数,同步与非同步,输入电压,输入电流,输出电压,输出电流,输入输出电容的选择;mosfet选型,电感选型,功耗&a…

数据结构(初阶2.顺序表)

文章目录 一、线性表 二、顺序表 2.1 概念和结构 2.2 分类 2.2.1 静态顺序表 2.2.2 动态顺序表 2.3动态顺序表的实现 1.SeqList.h 2.SeqList.c 打印顺序表 初始化 销毁 增容 尾插 头插 在指定位置之前插入数据 尾删 头删 在指定位置删除数据 3.test.c 一、线性表 线性表&#…

git安装使用gitlab

第一步:下载git 第二步:安装 第三步:配置sshkey 第四步:处理两台电脑的sshkey问题 第一步下载git 网址:Git点Downloads根据你的操作系统选择对应的版本,我的是Windows,所以我选择了Windows …

Java的高级特性

类的继承 继承是从已有的类中派生出新的类,新的类能拥有已有类的属性和行为,并且可以拓展新的属性和行为 public class 子类 extends 父类{子类类体 } 优点 代码的复用 提高编码效率 易于维护 使类与类产生关联,是多态的前提 缺点 类缺乏独…

计算机图形学入门28:相机、透镜和光场

1.前言 相机(Cameras)、透镜(Lenses)和光场(Light Fields)都是图形学中重要的组成部分。在之前的学习中,都是默认它们的存在,所以现在也需要单独拿出来学习下。 2.成像方法 计算机图形学有两种成像方法,即合成(Synthesis)和捕捉(Capture)。前…

JVM:类加载器

文章目录 一、什么是类加载器二、类加载器的应用场景三、类加载器的分类1、分类2、启动类加载器3、Java中的默认类加载器(1)扩展类加载器(2)应用程序类加载器(3)arthas中类加载器相关的功能 四、双亲委派机…

78. UE5 RPG 创建技能数据并初始化技能ui

在上一篇文章里,我们创建了技能的UI,接下来,我们要考虑如何实现对技能UI的填充,肯定不能直接写死,需要有一些方法去实现技能的更新。我们期望能够创建一个技能数据,然后根据数据通过回调的方式实现数据的更…

【经典面试题】是否形成有环链表

1.环形链表oj 2. oj解法 利用快慢指针: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/typedef struct ListNode ListNode; bool hasCycle(struct ListNode *head) {ListNode* slow head, *fast…

UNIAPP_ReferenceError: TextEncoder is not defined 解决

错误信息 1、安装text-decoding npm install text-decoding2、main.js import { TextEncoder, TextDecoder } from text-decoding global.TextEncoder TextEncoder global.TextDecoder TextDecoder

【网络安全】Oracle:SSRF获取元数据

未经许可,不得转载。 文章目录 前言正文漏洞利用 前言 Acme 是一家广受欢迎的播客托管公司,拥有庞大的客户群体。与许多大型运营公司一样,Acme 采用了Apiary的服务,使用户能够安全高效地管理他们的播客。 Apiary 于2017年初被Or…

Java SpringBoot 若依 后端实现评论“盖楼“,“楼中楼“功能 递归查询递归组装评论结构

效果图 数据库设计 还可以使用路径模块 一级评论id,二级评论id, 用like最左匹配原则查询子评论 因为接手遗留代码&#xff0c;需要添加字段&#xff0c;改动数据库&#xff0c;我就不改动了&#xff0c;导致我下面递归查询子评论不是很好。 业务代码 Overridepublic List<S…

OpenCV漫水填充函数floodFill函数的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 功能描述 ffloodFill函数是OpenCV库中用于图像处理的一个功能&#xff0c;它用于填充与种子点颜色相近的连通区域。这个函数在很多场景下都非常有用&#x…

电子电气架构 --- 关于DoIP的一些闲思 上

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

上传图片,base64改为文件流,并转给后端

需求&#xff1a; html代码&#xff1a; <el-dialog v-model"dialogPicVisible" title"新增图片" width"500"><el-form :model"picForm"><el-form-item label"图片名称&#xff1a;" :label-width"10…

【数组、特殊矩阵的压缩存储】

目录 一、数组1.1、一维数组1.1.1 、一维数组的定义方式1.1.2、一维数组的数组名 1.2、二维数组1.2.1、二维数组的定义方式1.2.2、二维数组的数组名 二、对称矩阵的压缩存储三、三角矩阵的压缩存储四、三对角矩阵的压缩存储五、稀疏矩阵的压缩存储 一、数组 概述&#xff1a;数…

基于Vue和UCharts的前端组件化开发:实现高效、可维护的词云图与进度条组件

基于Vue和UCharts的前端组件化开发&#xff1a;实现高效、可维护的词云图与进度条组件 摘要 随着前端技术的迅速发展和业务场景的日益复杂&#xff0c;传统的整块应用开发方式已无法满足现代开发的需求。组件化开发作为一种有效的解决方案&#xff0c;能够将系统拆分为独立、…

SpringCoud组件

一、使用SpringCloudAlibaba <dependencyManagement><dependencies><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-dependencies</artifactId><version>2023.0.1.0</version><…