OpenCV图像拼接(2)基于羽化(feathering)技术的图像融合算法拼接类cv::detail::FeatherBlender

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::detail::FeatherBlender 是 OpenCV 中用于图像拼接的一个类,它属于 stitching 模块的一部分。这个类实现了基于羽化(feathering)技术的图像融合算法,用于平滑地混合重叠区域中的图像,从而生成无缝的全景图。

主要特点

  • 羽化技术:通过在图像的重叠部分应用加权平均来实现平滑过渡,权重通常是根据距离边缘的距离来确定的。
  • 简单且高效:适用于大多数基本的图像拼接需求,尽管可能不如一些更复杂的缝合方法(如基于图割的缝合器)那样精确,但它的计算效率更高。

成员函数

  • 构造函数
    FeatherBlender(double sharpness = 0.01): 构造函数允许指定羽化的锐度(sharpness),默认值为0.01。锐度参数影响羽化效果的平滑程度,较小的值产生更广泛的羽化。

  • setSharpness
    void setSharpness(double sharpness): 设置羽化的锐度。较高的锐度值会导致较窄的羽化区域,反之亦然。

  • prepare
    void prepare(const std::vector &corners, const std::vector &sizes): 根据输入图像的角点位置和尺寸准备羽化混合器。这个函数通常在开始拼接过程前调用,以便确定如何处理每个图像的重叠区域。

  • apply
    void apply(int idx, const Mat &img, const Mat &mask, Mat &result_mask): 将指定索引的图像应用到结果中,并根据当前设置的羽化参数进行混合。idx 表示要应用的图像的索引,img 是该图像,mask 是对应的掩码,而 result_mask 是输出结果的掩码。

  • blend
    void blend(const std::vector &src, const std::vector &masks, Mat &dst): 执行最终的图像混合操作。src 包含所有待拼接的源图像,masks 包含对应于每张源图像的掩码,dst 是输出的拼接后的图像。

代码示例

#include <opencv2/opencv.hpp>
#include <opencv2/stitching.hpp>int main() {// 加载图像std::vector<cv::Mat> imgs;imgs.push_back(cv::imread("/media/dingxin/data/study/OpenCV/sources/images/stich1.png"));imgs.push_back(cv::imread("/media/dingxin/data/study/OpenCV/sources/images/stich2.png"));if (imgs[0].empty() || imgs[1].empty()) {std::cerr << "Error loading images!" << std::endl;return -1;}// 创建并配置 FeatherBlenderdouble feather_width = 5; // 羽化宽度cv::Ptr<cv::detail::FeatherBlender> blender = cv::makePtr<cv::detail::FeatherBlender>(feather_width);// 创建拼接器,并设置为使用 FeatherBlendercv::Ptr<cv::Stitcher> stitcher = cv::Stitcher::create(cv::Stitcher::PANORAMA);stitcher->setBlender(blender);// 执行拼接cv::Mat pano;cv::Stitcher::Status status = stitcher->stitch(imgs, pano);if (status != cv::Stitcher::OK) {std::cerr << "Can't stitch images, error code = " << int(status) << std::endl;return -1;}// 显示结果cv::imshow("原始图1", imgs[0]);cv::imshow("原始图2", imgs[1]);cv::imshow("Panorama", pano);cv::waitKey(0);return 0;
}

运行结果

在这里插入图片描述

在这里插入图片描述
拼接的相当完美,(o)/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/37929.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何用Function Calling解锁OpenAI的「真实世界」交互能力?(附Node.js 实战)

一、Function Calling&#xff1a;大模型的「手脚延伸器」 1.1 核心定义 Function Calling是OpenAI在2023年6月13日推出的革命性功能&#xff08;对应模型版本gpt-3.5-turbo-0613和gpt-4-0613&#xff09;&#xff0c;允许开发者通过自然语言指令触发预定义函数&#xff0c;实…

鸿蒙ArkTS+ArkUI实现五子棋游戏

鸿蒙ArkTSArkUI实现五子棋游戏 前言 近期&#xff0c;鸿蒙系统热度飙升&#xff0c;引发了周围众多朋友的热烈探讨。出于这份浓厚的好奇心&#xff0c;我初步浏览了其官方文档&#xff0c;发现信息量庞大&#xff0c;全面消化需耗时良久并考验人的毅力。自踏入编程领域以来&am…

单元测试mock

一、背景 现在有A类,B类,C类&#xff0c;A类依赖B类,依赖C类&#xff0c;如果想要测试A类中的某个方法的业务逻辑。A类依赖其他类&#xff0c;则把其他类给mock&#xff0c;然后A类需要真实对象。这样就可以测试A类中的方法。 举例&#xff1a;Ticket类需要调用Flight类和Pas…

深度学习篇---深度学习中的范数

文章目录 前言一、向量范数1.L0范数1.1定义1.2计算式1.3特点1.4应用场景1.4.1特征选择1.4.2压缩感知 2.L1范数&#xff08;曼哈顿范数&#xff09;2.1定义2.2计算式2.3特点2.4应用场景2.4.1L1正则化2.4.2鲁棒回归 3.L2范数&#xff08;欧几里得范数&#xff09;3.1定义3.2特点3…

JVM常见概念之条件移动

问题 当我们有分支频率数据时&#xff0c;有什么有趣的技巧可以做吗&#xff1f;什么是条件移动&#xff1f; 基础知识 如果您需要在来自一个分支的两个结果之间进行选择&#xff0c;那么您可以在 ISA 级别做两件不同的事情。 首先&#xff0c;你可以创建一个分支&#xff…

Debug-037-table列表勾选回显方案

效果展示&#xff1a; 图1 图2 最近实现一个支持勾选的el-table可以回显之前勾选项的功能。实现了一个“编辑”的功能&#xff1a; 在图1中的列表中有三行数据&#xff0c;当点击“更换设备”按钮时&#xff0c;打开抽屉显示el-table组件如图2所示&#xff0c;可以直接回显勾选…

Python散点图(Scatter Plot):数据探索的“第一张图表”

在数据可视化领域,散点图是一种强大而灵活的工具,它能够帮助我们直观地理解和探索数据集中变量之间的关系。本文将深入探讨散点图的核心原理、应用场景以及如何使用Python进行高效绘制。 后续几篇将介绍高级技巧、复杂应用场景。 Python散点图(Scatter Plot):高阶分析、散点…

docker利用ollama +Open WebGUI在本地搭建部署一套Deepseek-r1模型

系统&#xff1a;没有限制&#xff0c;可以运行docker就行 磁盘空间&#xff1a;至少预留50GB; 内存&#xff1a;8GB docker版本&#xff1a;4.38.0 桌面版 下载ollama镜像 由于docker镜像地址&#xff0c;网络不太稳定&#xff0c;建议科学上网的一台服务器拉取ollama镜像&am…

JavaScript |(六)DOM事件 | 尚硅谷JavaScript基础实战

学习来源&#xff1a;尚硅谷JavaScript基础&实战丨JS入门到精通全套完整版 笔记来源&#xff1a;在这位大佬的基础上添加了一些东西&#xff0c;欢迎大家支持原创&#xff0c;大佬太棒了&#xff1a;JavaScript |&#xff08;六&#xff09;DOM事件 | 尚硅谷JavaScript基础…

卷积神经网络 - 梯度和反向传播算法

在卷积网络中&#xff0c;参数为卷积核中权重以及偏置。和全连接前馈网络类似&#xff0c;卷积网络也可以通过误差反向传播算法来进行参数学习。本文我们从数学角度&#xff0c;来学习卷积神经网络梯度的推导和其反向传播算法的原理。 一、梯度&#xff1a;损失函数 L 关于第 …

鸿蒙NEXT项目实战-百得知识库03

代码仓地址&#xff0c;大家记得点个star IbestKnowTeach: 百得知识库基于鸿蒙NEXT稳定版实现的一款企业级开发项目案例。 本案例涉及到多个鸿蒙相关技术知识点&#xff1a; 1、布局 2、配置文件 3、组件的封装和使用 4、路由的使用 5、请求响应拦截器的封装 6、位置服务 7、三…

【测试篇】关于allpairs实现正交测试用例保姆级讲解,以及常见的错误问题

前言 &#x1f31f;&#x1f31f;本期讲解关于测试工具相关知识介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话不多说…

OpenCV图像拼接(4)图像拼接模块的一个匹配器类cv::detail::BestOf2NearestRangeMatcher

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::detail::BestOf2NearestRangeMatcher 是 OpenCV 库中用于图像拼接模块的一个匹配器类&#xff0c;专门用于寻找两幅图像之间的最佳特征点匹配…

C++: AVL树(实现旋转操作)

前言 map/set容器有个共同点是&#xff1a;其底层都是按照二叉搜索树来实现的&#xff0c;但是二叉搜索树有其自身的缺陷&#xff0c;假如往树中插入的元素有序或者接近有序&#xff0c;二叉搜索树就会退化成单支树&#xff0c;时间复杂度会退化成O(N)&#xff0c;因此map、set…

OpenCV中距离公式

一、各类距离公式总结 常见距离公式 欧氏距离&#xff1a; 曼哈顿距离&#xff08;L1&#xff09;‌&#xff1a; 切比雪夫距离&#xff08;Chessboard&#xff09;‌&#xff1a; 1、点与点距离(欧氏距离) ‌二维空间‌ 设两点坐标为 P1(x1,y1)、P2(x2,y2)&#xff0c;其距离…

六十天前端强化训练之第二十四天之Vue 模板语法与 v-for 指令大师级详解

欢迎来到编程星辰海的博客讲解 看完可以给一个免费的三连吗&#xff0c;谢谢大佬&#xff01; 目录 一、模板语法与指令知识精讲 1.1 模板语法三大核心 1.2 常见指令全家福 1.3 v-for 深度解析 二、商品列表示例完整实现 2.1 完整可运行代码 2.2 代码解析 2.3 运行效果…

XSS跨站脚本攻击漏洞(Cross Site Scripting)

前提概要 本文章主要用于分享XSS跨站脚本攻击漏洞基础学习&#xff0c;以下是对XSS跨站脚本攻击漏洞的一些个人解析&#xff0c;请大家结合参考其他文章中的相关信息进行归纳和补充。 XSS跨站脚本攻击漏洞描述 跨站脚本攻击&#xff08;XSS&#xff09;漏洞是一种常见且危害较…

用ArcGIS做一张符合环评要求的植被类型图

植被类型图是环境影响评价&#xff08;环评&#xff09;中的重要图件&#xff0c;需满足数据准确性、制图规范性和信息完整性等要求。本教程将基于ArcMap平台&#xff0c;从数据准备到成果输出&#xff0c;详细讲解如何制作符合环评技术规范的植被类型图。 ArcGIS遥感解译土地…

详解string类+迭代器

迭代器 概念&#xff1a;在 C 中&#xff0c;迭代器是访问容器&#xff08;如数组、列表、向量、字符串等&#xff09;元素的一种方式。迭代器提供了一种统一的接口&#xff0c;使得你可以使用相同的代码来遍历不同类型的容器。迭代器本质上是一个指针或者指针的封装&#xff0…

Sqoop安装部署

Apache Sqoop 简介 Sqoop&#xff08;SQL-to-Hadoop&#xff09;是 Apache 开源项目&#xff0c;主要用于&#xff1a; 将关系型数据库中的数据导入 Hadoop 分布式文件系统&#xff08;HDFS&#xff09;或相关组件&#xff08;如 Hive、HBase&#xff09;。 将 Hadoop 处理后…