08 模型演化根本 深度学习推荐算法的五大范式

易经》“九三:君于终日乾乾;夕惕若,厉无咎”。九三是指阳爻在卦中处于第三位,已经到达中位,惕龙指这个阶段逐渐理性,德才已经显现,会引人注目;但要反思自己的不足,努力不懈,日夜警惕戒备,即使处于危境,也可无咎。

模块三我们将讲解深度学习推荐算法,这部分近年来发展迅速,我们将学习和掌握最有影响力的深度学习推荐算法及其发展脉络。

上一课时《07 | 物以类聚,基于特征的七种算法模型》,我们讲到传统机器学习组合 GDBT+LR 模型开启了特征工程化和端到端学习的开端,而深度学习的发展将继续延续了这一趋势。

神经网络的结构更加复杂和灵活多变,所以复杂的网络结构就需要更多、更丰富的样本去拟合参数,这样对算力的要求也就高了很多。但是深度学习能够全自动从原有数据中提取到有用特征,而对于处理文本、图像、语音等非结构化数据,人工筛选是基本不可能完成,所以我们说深度学习具有传统机器学习无法比拟的优势。

因此,从这一讲开始我们进入激动人心的深度学习算法部分。

进入深度学习时代后,推荐模型主要有以下两个方面的进展:

  • 与传统模型相比,深度学习模型的表达能力更强,且能够从数据中挖掘出更多隐藏的模式;

  • 深度学习模型结构非常灵活,它能够根据业务场景和数据特点灵活调整模型结构,使得模型与应用场景实现完美契合。

《道德经》中“道之在天下,犹川谷之于江海;为天下谷,常德乃足,复归于朴。朴散则为器,圣人用之,则为官长,故大制不割。”这句话主要阐述了“见素抱朴”的思想。

在光怪陆离、纷繁芜杂的世界,我们只有剥离事物的表面现象,找到事物的本质,才能把握一切事物的变化规律,并据此预测事物的发展趋势,也就是所谓的“降维”思想。

而机器学习的过程就是对世界降维理解的过程,其中用户的隐向量是对用户的降维理解,物品的隐向量是对物品的降维理解,这就是我们说的“朴”。

那么,我们应该如何找到“朴”呢?也就是如何找到事物的本质呢?

在深度学习中,通过找到一些范式方法,并将这些范式方法应用到范式模型中,我们就可以得到“朴”。

所谓的范式模型,是指其他模型基于此范式演化的基础模型。

得到的“朴”如果不够精确,我们则可以通过改进范式与范式的组合方式,来拟合反馈更加精确的“朴”,这就形成了推荐系统的深度学习体系。

这也是这一讲的重点内容,下面我们着重介绍一下。在推荐系统中,深度学习的范式模型分为多层感知器(MLP)、自编码器(AE)、受限玻尔兹曼机(RBM)、卷积神经网络(CNN)、循环神经网络(RNN)这五种,下面我们逐一说明一下。

多层感知器(MLP)—— 最通用组件

目前多层感知器(Muti-Layer Perception)在推荐领域应用甚为广泛,它是一种简单、原汁原味的神经网络,能有效地建模高阶特征之间的交互,属于深度推荐算法中最通用的组件,并且其他的各种范式都是由此演变而来。

最典型的 MLP 包括三层:输入层、一个或多个隐藏层和输出层。MLP 神经网络的不同层之间是全连接的;每个神经元上面都有一个输入权重、偏置量和激活函数。

MLP 已被证明是一种通用的函数近似方法,可以拟合复杂的函数或解决分类问题。

自编码器(AE)—— 学习隐向量表征

自编码器(AutoEncoder)是最常见的神经网络无监督模型,主要用于特征降维或特征提取。

AE 一般由编码器(Encoder)和解码器(Decoder)组成,

  • 这里可以理解为学习到输入数据的隐向量表征称为编码;

  • 用隐向量表征重构出原始输入数据称为解码。

模型目的在于,使输入和输出无限逼近。学习数据的隐向量表征由最中间层计算输出。

自编码器在推荐领域,主要用于学习用户或物品的隐向量表征,然后基于表征预测用户对物品的偏好。需要说明的是,自编码器的适用场景与其训练数据强相关,且因为属于无监督模型,无需标注,可以自动进行样本学习。

受限玻尔兹曼机(RBM)—— 评分预测

受限玻尔兹曼机(Restricted Boltzmann Machine)是一个由可见层和隐藏层组成的双层神经网络无监督模型,两层内部不存在连接,两层之间进行全连接。

RBM 与玻尔兹曼机(Boltzmann Machine)的差别在于:RBM 不存在两层内部连接,而 BM 存在两层内部连接,因为去除了同层之间的连接,从而提高了训练效率。

RBM 在推荐领域,主要用于评分预测,通过学习用户对物品的评分数据进行预测。

卷积神经网络(CNN)—— 提取隐向量表征

卷积神经网络(Convolutional Neural Network)是一种特殊的前馈神经网络,基本结构上包含以下三层:

  • 卷积层,捕捉局部特征;

  • 池化层,可大幅降低模型参数量级,并有效避免过拟合;

  • 全连接层,根据不同的场景和任务输出模型的结果。

可以看出,CNN 把大量参数降维成少量参数再做处理,简化问题域的同时,又不会影响结果。

CNN 在推荐领域,主要用于从图像、文本、音频中提取物品的隐向量表征,并结合用户的隐向量表征进行推荐。

循环神经网络(RNN)—— 序列数据建模

循环神经网络(Recurrent Neural Network)是一种含有反馈结构的神经网络,模型输出不但与当前输入相关,与之前的输入也相关,适用于对序列数据建模。

RNN 在网络各隐层之间的节点是具有连接的,可根据输入层的输出和前一时刻的隐层状态来计算当前时刻的隐层输出,从而具备对过去信息的记忆。

RNN 本身存在梯度消失和梯度爆炸的问题,经过改进网络结构后,如长短时记忆网络(LSTM)和门控循环单元(GRU)等采用了特殊的隐层结构,使得模型具备有效建模长程依赖关系的能力。

RNN 在推荐领域,主要用于对用户行为序列的建模,以及对用户或物品相关文本信息序列的建模等。

【其他范式还有哪些?】

除了上述 5 种常用范式之外,还包括神经自回归分布估计(Neural Autoregressive Distribution Estimation)、对抗网络(Adversarial Networks)等范式。

由于它们在推荐领域的应用比较有限,这一讲中我们就不一一介绍了。

此外,目前注意力机制、深度强化学习等在深度学习领域中发展迅速,在推荐领域深度模型中也有普遍化的趋势,这类模型我们将在“10 | 更深、更专注的 7 种深度推荐范式组合算法”中介绍。

【从 深度网络范式 到 深度学习推荐模型】

利用以上深度网络范式来构成深度学习推荐模型主要有以下两种方法。

1、利用深度网络范式进行用户和物品的表征或者高阶交互特征提取(双塔模型),再将隐向量表征集成到推荐系统模型当中,这里集成方式又分为以下两种。

松耦合:信息呈单向流动,将隐向量表征作为推荐模型的输入。

紧耦合:将深度学习部分作为单独的组件接入模型,再加上其他传统或者深度模型组件,同时进行学习和预测。这种情况下,隐向量表征是跟随模型学习而变化的。

2、利用深度网络范式直接拟合效用函数,这种方式直接利用一个或多个深度网络范式,产出预测结果。

以上方法我们将在后续的课程中逐步讲解。

本节小结

道德经中“道生一,一生二,二生三,三生万物”,说的是“道”的诞生,从无到有产生阴阳二气,阴阳二气相交而形成了“三”,“三”即是万物的范式,通过范式的循环往复地叠加组合产生了万物。

本节介绍了深度推荐方法中的范式,下一节开始我们将逐个介绍基于这些范式方法的深度学习模型。那么关于深度推荐算法,你了解哪些?它们的关系是什么?欢迎与我讨论。

另外,如果你觉得本专栏有价值,欢迎分享给更多好友~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/381284.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ABAP打印WORD的解决方案

客户要求按照固定格式输出到WORD模板中,目前OLE和DOI研究了均不太适合用于这种需求。 cl_docx_document类可以将WORD转化为XML文件,利用替换字符串方法将文档内容进行填充同 时不破坏WORD现有格式。 首先需要将WORD的单元格用各种预定义的字符进行填充…

《昇思25天学习打卡营第23天|RNN实现情感分类》

使用RNN进行情感分类:基于IMDB数据集的LSTM应用 引言 情感分析是自然语言处理(NLP)中的一个重要应用,广泛用于电影评论、社交媒体等文本数据的情感分类任务。本文将介绍如何使用递归神经网络(RNN)实现情感…

使用IDEA编写lua脚本并运行

下载lua https://github.com/rjpcomputing/luaforwindows/releases 是否创建桌面快捷方式:我们的目标是使用IDEA编写lua脚本,所以不需要勾选。后面需要的话,可以到安装目录下手动创建快捷方式 环境变量自动配置 安装后会自动配置好环境变量…

基于Java的校园交友网站系统

你好,我是专注于计算机技术研究的学姐码农小野。如果你对校园交友网站系统的构建或者相关技术感兴趣,欢迎私信交流。 开发语言 Java 数据库 MySQL 技术 Java语言、SpringBoot框架、B/S结构 工具 MyEclipse、Navicat、Maven 系统展示 首页 个人…

Docker启动PostgreSql并设置时间与主机同步

在 Docker 中启动 PostgreSql 时,需要配置容器的时间与主机同步。可以通过在 Dockerfile 或者 Docker Compose 文件中设置容器的时区,或者使用宿主机的时间来同步容器的时间。这样可以确保容器中的 PostgreSql 与主机的时间保持一致,避免在使…

基于电鸿(电力鸿蒙)的边缘计算网关,支持定制

1 产品信息 边缘计算网关基于平头哥 TH1520 芯片,支持 OpenHarmony 小型系统,是 连接物联网设备和云平台的重要枢纽,可应用于城市基础设施,智能工厂,智能建筑,营业网点,运营 服务中心相关场…

网站及图片字体商用侵权怎么办

如果您的网站因为使用了商业字体而遭到举报,这可能意味着您未经授权就使用了受版权保护的字体,这构成了版权侵权。 boosstrap默认字体是否含商用字体? body {font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;font-size…

公司技术栈用到了RocketMQ,我对此块知识进行了回顾(初始RocketMQ)

前言 作为24届的校招生,不知道大伙儿们是否都已经到了工作岗位上。为了以后更方便的接触到公司的业务,我司为我们安排了将近一个月的实操。虽然不用敲代码,但是… 了解到我司使用到的技术栈,在空闲时间正好对RocketMQ这块技术做个…

金蝶云星空与金蝶云星空对接集成发货通知单查询打通库存状态转换单

金蝶云星空与金蝶云星空对接集成发货通知单查询打通库存状态转换单 数据源系统:金蝶云星空 金蝶K/3Cloud结合当今先进管理理论和数十万家国内客户最佳应用实践,面向事业部制、多地点、多工厂等运营协同与管控型企业及集团公司,提供一个通用的ERP服务平台…

在RK3568上如何烧录MAC?

这里我们用RKDevInfoWriteTool 1.1.4版本 下载地址:https://pan.baidu.com/s/1Y5uNhkyn7D_CjdT98GrlWA?pwdhm30 提 取 码:hm30 烧录过程: 1. 解压RKDevInfoWriteTool_Setup_V1.4_210527.7z 进入解压目录,双击运行RKDevInfo…

Nexus3 批量上传 jar 包、pom文件

Nexus3 Maven 私服搭建及各种使用 详见**Maven私服搭建及各种使用汇总2020** Maven 配置 Nexus 私服 在 Maven 项目中配置 Nexus 私服,需要在项目的 pom.xml 或 maven 的 settings.xml 文件中添加 Nexus 仓库的配置。 示例: 以下是一个项目的 pom.xml…

车载音视频App框架设计

简介 统一播放器提供媒体播放一致性的交互和视觉体验,减少各个媒体应用和场景独自开发的重复工作量,实现媒体播放链路的一致性,减少碎片化的Bug。本文面向应用开发者介绍如何快速接入媒体播放器。 主要功能: 新设计的统一播放U…

Facebook Dating:社交平台的约会新体验

随着社交媒体的普及和技术的发展,传统的社交方式正在经历革新,尤其是在约会这个领域。Facebook作为全球领先的社交平台,推出了Facebook Dating,旨在为用户提供一个全新的约会体验。本文将探讨Facebook Dating如何重新定义社交平台…

Gettler‘s Screep World 笔记 Ⅰ

夏促时候刚刚入坑,写个笔记叭~ 环境配置 参考 HoPGoldy 大佬的简书,先配置下开发环境 萌新去看大佬的详细教程,我这里比较简单,有前端基础的可以直接抄 VSCode 跳过 node 我配的是v18.18.2 换源 npm config set registry h…

层次分析法模型【清风数模学习笔记】

视频学习:【强烈推荐】清风:数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili 适用于:评价类问题 评价目标 可选方案 评价的准则 如何确定评价标准 题目 文献搜索(知网) 网站搜索…

【C语言】动态内存管理(上)

文章目录 前言1.为什么要存在动态内存2. malloc和free2.1 malloc2.2 free2.3 使用实例(malloc和free) 3. calloc3.1 calloc例子 前言 本文开始将开始学习C语言中一个比较重要的知识点或者是操作——动态内存管理。由于本次的知识比较重要,为…

JDK8升级到JDK17,报错Error:java:错误:不支持的发行版本5

1 问题描述: 我原来用到是JDK8,后来重新安装了JDK17后,并更换了JAVA_HOME的配置,在CDM上面查看JAVA版本确认安装无误。 当我打开IDEA运行代码时,就报错java:错误:不支持的发行版本5,至始至终我都…

汽车免拆诊断案例 | 2017 款林肯大陆车发动机偶尔无法起动

故障现象 一辆2017款林肯大陆车,搭载2.0T发动机,累计行驶里程约为7.5万km。车主进厂反映,有时按下起动按钮,起动机不工作,发动机无法起动,组合仪表点亮正常;多次按下起动按钮,发动机…

笔记:Few-Shot Learning小样本分类问题 + 孪生网络 + 预训练与微调

内容摘自王老师的B站视频,大家还是尽量去看视频,老师讲的特别好,不到一小时的时间就缕清了小样本学习的基础知识点~Few-Shot Learning (1/3): 基本概念_哔哩哔哩_bilibili Few-Shot Learning(小样本分类) 假设现在每类…

【学习笔记】无人机系统(UAS)的连接、识别和跟踪(五)-无人机跟踪

目录 引言 5.3 无人机跟踪 5.3.1 无人机跟踪模型 5.3.2 无人机位置报告流程 5.3.3 无人机存在监测流程 引言 3GPP TS 23.256 技术规范,主要定义了3GPP系统对无人机(UAV)的连接性、身份识别、跟踪及A2X(Aircraft-to-Everyth…