可见光遥感目标检测(一)任务概要介绍

前言  本篇开始对遥感图像的目标检测进行介绍,介绍了其目标前景、数据集以及评价指标。

本教程禁止转载。同时,本教程来自知识星球【CV技术指南】更多技术教程,可加入星球学习。

Transformer、目标检测、语义分割交流群

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

CV各大方向专栏与各个部署框架最全教程整理

遥感图像介绍

本文介绍的是可见光遥感图像上的目标检测,首先我们来了解一下什么是遥感图像,遥感图像,也称为高分辨率遥感图像(Very High-resolution Imagery),但是在遥感图像的领域内,除了可见光遥感图像之外,还有其他两种遥感图像,一种是高光谱遥感图像(Hyperspectral Imagery),一种是雷达遥感图像(Synthetic Aperture Radar Imagery),其分类依据是根据成像的介质不同来进行分类的。我们主要用到的是高分辨率遥感图像,接下来说以下可见光遥感图像的成像优点。第一,其成像方式更符合我们人类眼睛成像方式;第二,其分辨率超高,能以更精细的分辨率产生地球表面的全色多光谱图像;第三,基于成像特点,对于进行图像分析(检测、分割等)十分友好。用一张图片直观的了解一下三种遥感图像的区别:

 图1 a图是可见光,b图是高光谱,c图是雷达


遥感图像特点及应用前景

遥感图像图像特点主要包含如下几个方面:

  1. 背景复杂,目标信息少,背景信息多。

  2. 图像中物体的方向各不相同,这点在水平视角中不存在。

  3. 基于遥感图像的拍摄尺度高,导致图像中有较多的小物体

  4. 目标尺度多样性复杂,一张图片中可能会同时存在飞机与汽车,明显飞机的尺度远远高于汽车的尺度。

  5. 图像中目标密集程度高,一张图片中可能会有多个目标,比如露天停车场。

上面这些特点,也是遥感图像算法设计中需要突出解决的问题

简单总结遥感图像应用,我们从军用与民用的角度划分:

  1. 军用角度:舰船、飞机的检测、定位、追踪。

  2. 民用角度:港口调度、资源勘探、森林防护。


可见光遥感图像目标检测

目标检测是一个比较“古老”的话题了,它的分水岭是在2014年,以前的方法我们不做介绍,这里们说一下14年以后的深度学习具有代表性的算法。主流分为两类算法 — 一阶段检测与二阶段检测。二阶段比较早出现的,代表的算法有R-CNN、  FAST-RCN、  SPP-NE、 FASTER-RCNN。一阶段出现较晚,代表算法有YOLOV1 ------ YOLOV7系列等,后续还有anchor free系列的方法,Query-based以Transformer为代表的方法等等。

旋转目标检测(Oriented Object Detect)可以看作是目标检测的一个子集,它与通用的目标检测最大的不同之处在于我们需要在定位目标位置及其宽高的基础上还需要额外回归出其朝向。最常见的是在遥感图像中的目标检测任务,通过卫星、航空航天器等拍摄的图片中存在各种带有方向属性的目标比如船只,汽车等。由于这些目标在遥感图像中尺寸一般较小,传统的矩形框很难贴合满足我们的要求,这个时候就需要加上朝向来得到一个更为贴合的矩形框。


数据集

深度学习离不开数据集,只有大规模的数据才能得到更优秀的模型,下面介绍一下关于可见光遥感图像的数据集。

  1. DOTA系列数据集:2018年武汉大学首发DOTA1.0版本的数据集共分为15个类别,采用定向边界框的标注方式。DOTA数据集1.5版本共分为16个类别,DOTA数据集2.0版本共分为18个类别,DOTA数据集在数据的类别与质量上都明显优于其他遥感方向的数据集。随着版本的提升检测的挑战性越来越大,其中顶会论文使用1.0版本与1.5版本居多,鲜有用2.0版本。

  2. HRSC2016数据集:西北工业大学发布的数据集,包含从几个著名港口收集的大量条形定向物体,外观不同,用于船舶识别。整个数据集有1061幅图像,从300 × 300到1500 × 900不等。

  3. UCAS-AOD数据集:拥有1510张图片,其中510张汽车图片和1000张飞机图片。总共有14,596个实例。整个数据集按照5:2:3的比例随机分为755张用于训练的图像、302张用于验证的图像和453张用于测试的图像。所有图像的大小约为1280 × 659。

  4. DIOR数据集:含23463张图片和190288实例,覆盖20种目标,大小为800×800,比DOTA数据集更大!这20个对象类是飞机、机场、棒球场、篮球场、桥梁、烟囱、水坝、高速公路服务区、高速公路收费站、港口、高尔夫球场、地面田径场、天桥、船舶、体育场、储罐、网球场、火车站、车辆和风磨。

  5. LEVIR数据集:由大量 800 × 600 像素和0.2m〜1.0m /像素的高分辨率Google Earth图像和超过22k的图像组成。LEVIR数据集涵盖了人类居住环境的大多数类型地面特征,例如城市,乡村,山区和海洋。数据集中未考虑冰川,沙漠和戈壁等极端陆地环境。数据集中有3种目标类型:飞机,轮船(包括近海轮船和向海轮船)和油罐。所有图像总共标记了11k个独立边界框,包括4,724架飞机,3,025艘船和3,279个油罐。数据集图像简略观看 提供了四张图片,2张来自DOTA数据集,2张来自HRSC2016数据集

    图2 来自HRSC2016数据集

        

不在贴放更多图片,提供了数据集的下载地址,有兴趣自己下载。

LEVIR数据集下载地址:

https://pan.baidu.com/s/1eUAq2PszdHeE2VSG3q5cw 

提取码: j9jp

DOTA数据集下载地址:

https://pan.baidu.com/s/1o4Tsx7hgh2a2O73kxJRVLg 

提取码: yvi1

UCAS-AOD数据集下载地址:

https://pan.baidu.com/s/1Poo0zEHTHDfBTnKPb5YTCg 

提取码: 7zsi

HRSC2016数据集下载地址:

https://pan.baidu.com/s/1Sz2aohknDVCYrnXcnPQuaQ 

提取码: 7fx1


常见评估指标

旋转目标检测的评估指标与通用目标检测指标基本一致采用AP50mAP来评估,需要注意的是计算IOU的时候要使用旋转框来计算交并比。

另外在实验分析中我们也可以将角度偏小的水平框和角度偏大的旋转框分别评估AP来判断当前算法是否对大的角度目标有很好的性能。

 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。

【技术文档】《从零搭建pytorch模型教程》122页PDF下载

QQ交流群:470899183。群内有大佬负责解答大家的日常学习、科研、代码问题。

模型部署交流群:732145323。用于计算机视觉方面的模型部署、高性能计算、优化加速、技术学习等方面的交流。

其它文章

上线一天,4k star | Facebook:Segment Anything

3090单卡5小时,每个人都能训练专属ChatGPT,港科大开源LMFlow

Efficient-HRNet | EfficientNet思想+HRNet技术会不会更强更快呢?

实践教程|GPU 利用率低常见原因分析及优化

ICLR 2023 | SoftMatch: 实现半监督学习中伪标签的质量和数量的trade-off

目标检测创新:一种基于区域的半监督方法,部分标签即可(附原论文下载)

CNN的反击!InceptionNeXt: 当 Inception 遇上 ConvNeXt

神经网络的可解释性分析:14种归因算法

无痛涨点:目标检测优化的实用Trick

详解PyTorch编译并调用自定义CUDA算子的三种方式

深度学习训练模型时,GPU显存不够怎么办?

CV各大方向专栏与各个部署框架最全教程整理

计算机视觉入门1v3辅导班

计算机视觉各个方向交流群

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38244.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv5全面解析教程①:网络结构逐行代码解读

撰文 | Fengwen, BBuf 本教程涉及的代码在: https://github.com/Oneflow-Inc/one-yolov5 教程也同样适用于 Ultralytics/YOLOv5,因为 One-YOLOv5 仅仅是换了一个运行时后端而已,计算逻辑和代码相比 Ultralytics/YOLOv5 没有做任何改变&#x…

可见光遥感图像目标检测(三)文字场景检测之Arbitrary

前言 前面介绍了关于可见光遥感图像目标检测任务主要面临的问题,现在对旋转目标的问题进行优化,为了便于大家理解与之前通用目标检测区别,采用Faster-Rcnn网络模型的架构对旋转目标的检测进行改进。 本教程禁止转载。同时,本教程来…

yolov5的简单使用

yolov5是什么 来自chatGPT的描述如下 YOLOv5是一种目标检测算法,它是YOLO系列算法的最新版本,由Joseph Redmon和Alexey Bochkovskiy等人开发。与之前的版本相比,YOLOv5在准确性和速度方面都有所提高。YOLOv5使用一种名为“Bag of Freebies”…

yolov3_spp项目中的各种配置文件读取

目录 1. open 函数 2. cfg文件夹下文档解析 2.1 hyp.yaml 2.2 my_yolov_3.cfg 3. data文件夹下文档解析 3.1 my_data.data 3.2 其它 后缀名 .ymal .txt .json .cfg .data .names .shapes 可以自定义后缀名?? pyhon文件操作大…

目标检测算法——YOLOv5/YOLOv7改进之结合CBAM注意力机制

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

​目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

&#xff08;一&#xff09;前沿介绍 论文题目&#xff1a;CCNet: Criss-Cross Attention for Semantic Segmentation 论文地址&#xff1a;https://arxiv.org/pdf/1811.11721.pdf 代码地址&#xff1a;https://github.com/shanglianlm0525/CvPytorch 本文是ICCV2019的语义分…

目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

>>>深度学习Tricks&#xff0c;第一时间送达<<< 目录 &#xff08;一&#xff09;前言 1.GSConv模块 2.Slim Neck&#xff08;GSBottleneckVoVGSCSP&#xff09; &#xff08;二&#xff09;YOLOv5改进之GSConvSlim Neck 1.配置common.py文件 2.配置yo…

目标检测算法——YOLOv5改进|增加小目标检测层

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

【学习笔记】YOLOv5训练自己的数据集

训练自己的数据集进行总结&#xff0c;方便接下来的学习 目录 1.设置文件夹 2.标记自己的数据集 2.1在百度图片上找到自己想要的图片并批量下载 2.2labelimg软件的使用 3.修改配置文件 3.1AOCAO parameter.yaml 3.2AOCAO model.yaml 4.开始训练 4.1改代码 4.2训练过…

Tips and tricks for Neural Networks 深度学习训练神经网络的技巧总结(不定期更新)

文章目录 本文说明Debug 技巧Overfit一个简单的Batch无法复现之前的结果 数据处理平衡数据数据增强&#xff08;Data Augmentation&#xff09;图片增强 使用Embedding数据压缩数据标准化&#xff08;Normalization&#xff09;标签平滑&#xff08;LabelSmoothing&#xff09;…

官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

暑期学习杂记

7月6日 粗略复习51&#xff08;问了学长后&#xff0c;我打算直接看小车视频&#xff0c;遇到不会的再回去看江科大&#xff09; 51单片机 LED灯共阳 数码管共阴 7月7日 定时器时间计算 [参考(1条消息) 51单片机定时器使用与计算-----day3_单片机定时器定时时间计算_电子笔记…

Raki的读paper小记:Retentive Network: A Successor to Transformer for Large Language Models

Abstract&Introduction&Related Work 研究任务 语言模型的基础架构已有方法和相关工作 S4&#xff0c;H3&#xff0c;Hyena&#xff0c;Linear Transformer用核函数近似注意力&#xff0c;以便将自回归推理重写为循环形式回归到使用循环模型进行高效推理&#xff0c;但…

Coremail RSAC大会观察:在邮件安全领域AI既是矛也是盾

《Coremail RSAC大会观察&#xff1a;在邮件安全领域AI既是矛也是盾》 全球网络安全界的盛会——2023年RSAC大会于当地时间4月24日-27日在美国旧金山召开&#xff0c;大会以“Stronger Together&#xff08;一起变得更强大&#xff09;”为主题&#xff0c;议程主要包含安全研…

小红书软件,自动文案神器,爆文效率UP

小红书软件&#xff0c;自动文案神器&#xff0c;爆文效率UP&#xff01;#小红书推广#小红书营销#百收小红书 Hello大家好&#xff0c;我是百收&#xff0c;今天给大家分享的是小红书&#xff0c;三步快速打造爆款笔记可批量可复制。那话不多说先给大家看一下呃&#xff0c;学…

5个AI人工智能平台推荐,绘画、写作文案、文章一键生成

随着人工智能技术的快速发展&#xff0c;AI原创文章写作平台也愈加成熟和完善&#xff0c;让文章的创作变得更加便捷、高效、优质。下面介绍五个国内知名的AI原创文章写作平台&#xff0c;它们各有特色&#xff0c;可以满足您的不同需求。 5个AI人工智能平台推荐&#xff1a; …

沉浸式翻译

chrome沉浸式翻译插件 网页双语翻译&#xff0c;完全免费使用&#xff0c;支持Deepl/Google/Bing/腾讯/有道等。 一款免费、用户友好、简洁、革命性、广受好评的人工智能双语网络翻译扩展程序&#xff0c;可帮助您有效地弥合信息差距&#xff0c;也可在移动设备上使用&#xff…

ChatGPT新功能探索,沉浸式内容处理体验

ChatGPT已经正在广泛被企业接受&#xff0c;用来大幅提高效率。但传统的聊天模式在大篇幅文字处理时并不好用。因此新功能“沉浸内容处理模式”被推出&#xff0c;用来应对论文、邮件、文案的编写和优化。那我们就来体验一下这个新功能效果如何。以处理工作邮件为例。 一、从传…

大型语言模型 (LLM) 的两条发展路线:Finetune v.s. Prompt

前言 如果你对这篇文章感兴趣&#xff0c;可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」&#xff0c;查看完整博客分类与对应链接。 在大型语言模型的研究中&#xff0c;研究者对其有两种不同的期待&#xff0c;也可以理解为是两种不同的路线&#xff0c;具…

违禁敏感词检测

很多站长和自媒体人都有这样的烦恼&#xff0c;因为不慎发布违禁、违规内容比如涉黄、恐怖暴力、赌博、低俗辱骂、政治敏感等&#xff0c;导致文章下架或者网站整改。 另外&#xff0c;自从新《广告法》出台后&#xff0c;作为广告、营销人等群体在写文案的过程中必须时时注意新…