【OpenCV C++20 学习笔记】调节图片对比度和亮度(像素变换)

调节图片对比度和亮度(像素变换)

原理

关于OpenCV的配置和基础用法,请参阅本专栏的其他文章:垚武田的OpenCV合集

以下的原理来自Richard Szeliski的书《Computer Vision: Algorithms and Applications》(《计算机视觉:算法和应用》)。

像素变换

图片处理的操作基本上就是一个传入一张或多张图片,然后输出一张结果图片的方法。
对某个图片对象进行的操作可以分为以下两大类:

  • 点操作:像素变换
  • 域操作:涉及到相邻的像素

这章主要讨论像素变换。在像素变换中,每个像素的计算结果只与输入的像素和其他参数有关,不与图片中的其他像素相关。像素变换的应用包括图片亮度、对比度调整,以及颜色校正和颜色变换等。

亮度和对比度调整

在亮度和对比度的线性调整中,像素变换的算法非常简单,就是一个简单的线性变换:
g ( x ) = α f ( x ) + β g(x) = \alpha f(x) + \beta g(x)=αf(x)+β

  • α > 0 \alpha > 0 α>0,为增强参数; β \beta β为偏移参数
  • α \alpha α控制对比度; β \beta β用来控制亮度
  • f ( x ) f(x) f(x)为转换前的像素, g ( x ) g(x) g(x)为转换后的像素

也可以用行列坐标的形式来表示像素:
g ( i , j ) = α f ( i , j ) + β g(i, j) = \alpha f(i ,j) + \beta g(i,j)=αf(i,j)+β

  • i i i j j j分别代表行号和列号

代码实现

首先导入图片并储存到Mat对象中。

//CommandLineParser对main函数输入的参数进行解析,最后的字符串代表以下意义:
//@input表示一个有顺序的参数,将其命名为input
//lena.jpg,代表input的默认值
//input image,是对input参数的解释,说明它是输入的图像
CommandLineParser parser(argc, argv, "{@input | lena.jpg | input image}");
Mat image{ imread(parser.get<String>("@input")) };	//获取参数解析中的input参数
if (image.empty()) {//如果打开失败,则输出错误信息,并退出程序cout << "无法打开图片!\n" << endl;cout << "输入图片:" << argv[0] << "<参数错误>" << endl;return -1;
}

接着,创建一个新的Mat对象来储存变换后的结果。这个新对象的所有值初始化为0,而且具有和原图像同样的大小和类型:

Mat new_image{ Mat::zeros(image.size(), image.type()) };

Mat对象的创建方法可以参阅专栏中的《【OpenCV C++20 学习笔记】基本图像容器——Mat》

然后,声明 α \alpha α β \beta β这两个参数,并让用户能够通过控制台输入它们的值:

double alpha{ 1.0 };	//对比度控制参数
int beta{ 0 };			//亮度控制参数cout << "基础线性变换" << endl;
cout << "-----------" << endl;
cout << "* 输入alpha值 [1.0-3.0]:"; cin >> alpha;
cout << "* 输入beta值 [0-100]:"; cin >> beta;

现在,用一个嵌套的for循环语句,遍历原图片中的每一个像素,并对每一个像素都进行变换操作:

for (int y{ 0 }; y < image.rows; y++) {	//遍历行for (int x{ 0 }; x < image.cols; x++) {	//遍历列for (int c{ 0 }; c < image.channels(); c++) {	//遍历颜色通道new_image.at<Vec3b>(y, x)[c] =saturate_cast<uchar>(alpha * image.at<Vec3b>(y, x)[c] + beta);}}
}
  • 因为前面读取图片的时候,我们使用的是默认的BGR3通道格式。所以对于矩阵中的每一个数据项,我们用Vec3b数据类型来接收,并用下标c对3个通道中的每个通道值进行访问,最终每个数值的访问都使用了y(行数)、x(列数)、c(通道数);
  • 因为线性变换的计算可能使得结果超出原有类型的值域,或者变成其他类型(比如,当alpha为浮点数时,计算结果就会自动转换成浮点数)。所以,必须使用saturate_cast对最终结果进行类型转换。
    最后,创建窗口分别展示原始图片和变换后的图片
imshow("原始图片", image);
imshow("新图片", new_image);waitKey(0);

更简便的方法

除了使用for循环对矩阵中的所有值进行遍历和转换之外,还可以使用更加便利的转换方法:

image.convertTo(new_image, -1, alpha, beta);

正如我在《【OpenCV C++20 学习笔记】操作图片》一文中详细描述的那样,convertTo函数实际上就是在执行一个线性变化的操作。其函数原型如下:
void cv::Mat::convertTo(OutputArray m, int rtype, double alpha = 1, double beta = 0) const
其算法如下:
m ( x , y ) = s a t u r a t e _ c a s t < r T y p e > ( α ( ∗ t h i s ) ( x , y ) + β ) m(x,y) = saturate\_cast< rType>(\alpha(*this)(x, y)+\beta) m(x,y)=saturate_cast<rType>(α(this)(x,y)+β)
实质上就等于线性变化+类型转换的操作,即上一节代码中for循环体内的操作。所以上一节代码中的整个for循环,可以用convertTo函数代替。
上一节的代码只是为了展示像素变换的原理,在实际应用中还是建议使用convertTo()函数直接进行变换。

结果展示

使用2.2的 α \alpha α值和50的 β \beta β
参数输入

结果如下:
像素变换结果

γ \gamma γ校正及其实操案例

在这个案例中将运用另外一种亮度调整方法—— γ \gamma γ校正,来修复一张低曝光的照片。

线性变换的缺点

在上述线性变换的例子中,亮度的调整是通过给每个像素值加上或减去一个常量,即偏移参数 β \beta β。如果调整后的结果超出了值域,则会用saturate_cast进行类型转换,使其仍然落在值域之中。

saturate_cast的具体原理,请参阅本专栏中的《【OpenCV C++20学习笔记】矩阵上的掩码(mask)操作》中的“类型转换”小节

下面的直方图展示了偏移参数为80时,像素分布的改变:
亮度调整示意图

  • 灰色部分为图像的原始像素分布
  • 黑色部分为调整后的像素分布
  • 横坐标为每个颜色值
  • 纵坐标为每个颜色值对应的像素个数

可以看到颜色值整体往右偏移了,而且最大值和最小值上的像素个数显著增加,这是值域调整的结果。
另一方面,对比度的调整在上例中是通过改变 α \alpha α值实现的。 α \alpha α越大,对比度越高;反之,对比度越低。下面的直方图展示了,当 α \alpha α值小于1的时候,像素分布的改变如下:
对比度调整示意图

  • 图例与上图相同

与上图对比,这里的黑色部分像被横向挤压了,颜色值的值域变窄了,像素分布也更加集中了。
通过这两张图我们也可以看到线性变换的一些缺点:

  • 由于saturate_cast的值域控制,会丢失一些图片的信息,即原始值域会被截断,导致变换后的颜色值值域变窄
  • 亮度的调整同时会影响图片的对比度,如第一张图中所示, β \beta β参数在偏移像素分布的同时,也使像素更加集中
  • 变换后颜色值最大值和最小值处的像素分布会激增,会导致图片过曝

γ \gamma γ校正

γ \gamma γ校正使用非线性变换来调整图片的亮度,其原理如下:
O = ( I 255 ) γ × 255 O= (\frac{I}{255})^\gamma \times 255 O=(255I)γ×255

  • I I I为像素的原值颜色值
  • O O O为像素变换后的颜色值
  • γ \gamma γ为变换系数

变换结果 O O O和原始值 I I I之间由于是非线性的关系,所以并不是每个像素的变换效果都是一样的。下图显示在不同的 γ \gamma γ值下, O O O I I I之间的关系:
非线性变化

  • 横坐标为原始值I
  • 纵坐标为变换值O

可以看到,当 γ < 1 \gamma<1 γ<1的时候,原始的最小值(即I=0)的增加更多;反之,当 γ > 1 \gamma>1 γ>1时,原始的最小值增加更少。

低曝光图片矫正案例

下面两张图,左边是原图,右边是用线性变换矫正后的图片( α = 1.3 \alpha=1.3 α=1.3 β = 40 \beta=40 β=40):
线性变换案例
图片的整体亮度被调高了,但是很明显,天空的细节也丢失了,显得有点过曝。这就是上面所说的saturate_cast值域控制的结果。


下面是 γ \gamma γ校正( γ = 0.4 \gamma=0.4 γ=0.4)的结果:
非线性变换案例
效果高下立判!

原图、线性变换和 γ \gamma γ校正的像素分布直方图如下:
校正的像素分布直方图

  • 左图:线性变换后
  • 中图:原始图片
  • 右图: γ \gamma γ校正后
  • 3幅图的y轴并不一致

可以看到,在原图中,左边的像素偏多,也就是颜色值低(暗部)的像素偏多。在线性矫正之后,即左图中,可以看到最右边有个到顶的颜色值,这就是值域控制后的最大颜色值的像素分布(saturate_cast将所有超出最大值的变换结果都变成了最大值)。但是在 γ \gamma γ校正之后,即右图中,可以看到相对于原图往右偏移了,同时,暗部和亮部也发生了分布的改变。但是显然,暗部的变化更多(数量减少,且更分散),亮部的变化偏少。这就防止了图片的过曝。下图标注了对比的结果:
校正对比
所以可以得出以下结论:
相对于线性变换, γ \gamma γ校正在调整图片亮度上效果更好,也更能保留原始图片的细节

代码实现

在OpenCV中可以用LUT函数实现 γ \gamma γ校正。
其逻辑就是:用非线性算法计算出所有颜色值变换后的值,储存到一个查询表中;然后,用查询表的值一一替换原始图片中对应的颜色值。

double gamma_{ 0.4 };	//确定gamma值
Mat lookUpTable(1, 256, CV_8U);	//新建查询表
uchar* p = lookUpTable.ptr();	//获取查询表的指针,方便后面填充值
for (int i{ 0 }; i < 256; ++i)	//填充查询表p[i] = saturate_cast<uchar>(pow(i / 255.0, gamma_) * 255.0);	//非线性转换算法Mat res = image.clone();	//复制原始图片对象,作为储存变换结果的对象
LUT(image, lookUpTable, res);	//按查询表中的值,替换原始图片中的值

使用查询表能够提高替换原图中所有颜色值的速度。

查询表原理及LUT函数的用法,可以参阅本专栏中的【OpenCV C++20 学习笔记】扫描图片数据一文。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384333.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HAL STM32 SPI/ABZ/PWM方式读取MT6816磁编码器数据

HAL STM32 SPI/ABZ/PWM方式读取MT6816磁编码器数据 &#x1f4da;MT6816相关资料&#xff08;来自商家的相关资料&#xff09;&#xff1a; 资料&#xff1a;https://pan.baidu.com/s/1CAbdLBRi2dmL4D7cFve1XA?pwd8888 提取码&#xff1a;8888&#x1f4cd;驱动代码编写&…

FastAPI(七十九)实战开发《在线课程学习系统》接口开发-- 加入课程和退出课程

源码见&#xff1a;"fastapi_study_road-learning_system_online_courses: fastapi框架实战之--在线课程学习系统" 加入课程 我们先看下加入课程 1.是否登录 2.课程是否存在 3.是否已经存在 4.添加 首先实现逻辑 def get_student_course(db: Session, course: int…

如何开启或者关闭 Windows 安全登录?

什么是安全登录 什么是 Windows 安全登录呢&#xff1f;安全登录是 Windows 附加的一个组件&#xff0c;它可以在用户需要登录的之前先将登录界面隐藏&#xff0c;只有当用户按下 CtrlAltDelete 之后才出现登录屏幕&#xff0c;这样可以防止那些模拟登录界面的程序获取密码信息…

【9.PIE-Engine案例——加载Terra星全球500m植被指数16天合成产品(MOD13A1 V61)数据集】

加载Terra星全球500m植被指数16天合成产品(MOD13A1 V61)数据集 原始路径 欢迎大家登录航天宏图官网查看本案例原始来源 最终结果 具体代码 /*** File : MOD13A1* Time : 2020/7/21* Author : piesat* Version : 1.0* Contact : 400-890-0662* License : …

Interesting bug caused by getattr

题意&#xff1a;由 getattr 引起的有趣的 bug 问题背景&#xff1a; I try to train 8 CNN models with the same structures simultaneously. After training a model on a batch, I need to synchronize the weights of the feature extraction layers in other 7 models. …

WARNING: Ignoring invalid distribution -ip警告信息如何去掉?

查看已安装依赖列表的时候&#xff0c;出现了很多警告信息&#xff0c;如何去掉呢&#xff1f; 解决办法 打开这个路径&#xff1a;d:\software\python\python39\lib\site-packages 这种波浪线开头的&#xff0c;我们将它删除掉,就可以了。

Ubuntu设置网络

进入网络配置文件夹 cd /etc/netplan 使用 vim 打开下的配置文件 打开后的配置 配置说明&#xff1a; network:# 网络配置部分ethernets:# 配置名为ens33的以太网接口ens33:addresses:# 为ens33接口分配IP地址192.168.220.30&#xff0c;子网掩码为24位- 192.168.220.30/24n…

VS2019报错:找不到导入的项目,请确认import声明

解决办法 找到项目的.vcxproj文件 用记事本打开后使用ctrlF搜索import 发现import Project后面的.props文件路径不对&#xff0c;将路径改为相对路径 保存后重新加载项目&#xff0c;即可生成成功

AI发展下的伦理挑战:构建未来科技的道德框架

一、引言 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;我们正处在一个前所未有的科技变革时代。AI不仅在医疗、教育、金融、交通等领域展现出巨大的应用潜力&#xff0c;也在日常生活中扮演着越来越重要的角色。然而&#xff0c;这一技术的迅猛进步也带来…

git实践汇总【配置+日常使用+问题解决】

**最初配置步骤&#xff1a;** git config --global user.name "yournemae" git config --global user.email "yourmail" git config -l ssh-keygen -t rsa -C “xxx.xxxx.EXTcccc.com” git config --global ssh.variant ssh $ git clone git仓库路径 git…

云盘高速检测的秘密:密封圈外观检测全解析!

密封圈是一种用于填塞、隔离或密封两个相互连接部件之间空隙的圆形密封装置。密封圈通常由橡胶、塑料、金属等材料制成&#xff0c;具有弹性并能在压力作用下填充间隙&#xff0c;防止液体、气体或固体物质泄漏。 密封圈可根据具体应用选择不同材料&#xff0c;如橡胶密封圈适…

「Unity3D」场景中的距离单位Unit与相关设置PixelsToUnits、PixelsPerUnit

GameObject在场景的位置Position&#xff0c;并没有明确是什么具体单位——如&#xff1a;Transform的x、y、z&#xff0c;或RectTransform的PosX、PosY、PosZ。而RectTransform在面板上显示的Width和Height&#xff0c;也没有具体单位&#xff0c;其实并不是像素。 事实上&am…

谷粒商城实战笔记-59-商品服务-API-品牌管理-使用逆向工程的前后端代码

文章目录 一&#xff0c; 使用逆向工程生成的代码二&#xff0c;生成品牌管理菜单三&#xff0c;几个小问题 在本次的技术实践中&#xff0c;我们利用逆向工程的方法成功地为后台管理系统增加了品牌管理功能。这种开发方式不仅能快速地构建起功能模块&#xff0c;还能在一定程度…

qemu上运行android-x86 (基于ubuntu)

安装qemu x86_64 下载qemu源代码 进入根目录&#xff0c;执行./configure --target-listx86_64-softmmu make -j4 sudo make install 期间可能遇到python相关问题&#xff0c;比如版本不对、库找不到&#xff0c;版本不对可自行安装或是修改环境变量&#xff0c;库找不到可以检…

如何检查代理IP地址是否被占用

使用代理IP时&#xff0c;有时候会发现IP仍然不可用&#xff0c;可能是因为已经被其他用户或者网络占用了。为了检测代理IP是否被占用&#xff0c;我们可以采用一些方法进行验证测试&#xff0c;以保证代理IP的有效性和稳定性。 1.ARP缓存方法 ARP缓存法是一种简单有效的检测代…

unity 实现图片的放大与缩小(根据鼠标位置拉伸放缩)

1创建UnityHelper.cs using UnityEngine.Events; using UnityEngine.EventSystems;public class UnityHelper {/// <summary>/// 简化向EventTrigger组件添加事件的操作。/// </summary>/// <param name"_eventTrigger">要添加事件监听的UI元素上…

将Android Library项目发布到JitPack仓库

将项目代码导入Github 1.将本地项目目录初始化为 Git 仓库。 默认情况下&#xff0c;初始分支称为 main; 如果使用 Git 2.28.0 或更高版本&#xff0c;则可以使用 -b 设置默认分支的名称。 git init -b main 如果使用 Git 2.27.1 或更低版本&#xff0c;则可以使用 git symbo…

ffmpeg更改视频的帧率

note 视频帧率调整 帧率(fps-frame per second) 例如&#xff1a;原来帧率为30&#xff0c;调整后为1 现象&#xff1a;原来是每秒有30张图像&#xff0c;调整后每秒1张图像&#xff0c;看着图像很慢 实现&#xff1a;在每秒的时间区间里&#xff0c;取一张图像…

Vue--解决error:0308010C:digital envelope routines::unsupported

原文网址&#xff1a;Vue--解决error:0308010C:digital envelope routines::unsupported_IT利刃出鞘的博客-CSDN博客 简介 本文介绍如何解决node.js在运行Vue项目时的报错&#xff1a;error:0308010C:digital envelope routines::unsupported。 问题描述 使用node.js运行Vu…

PyTorch深度学习实战——使用深度Q学习进行Pong游戏

PyTorch深度学习实战——使用深度Q学习进行Pong游戏 0. 前言1. 结合固定目标网络的深度 Q 学习模型1.1 模型输入1.2 模型策略2. 实现深度 Q 学习进行 Pong 游戏相关链接0. 前言 我们已经学习了如何利用深度 Q 学习来进行 Gym 中的 CartPole 游戏。在本节中,我们将研究更复杂的…