自训练和增量训练word2vec模型

1、自己准备训练语料文件

根据自己的业务场景准备训练数据,比如用户在商城上的同购行为序列或同浏览行为序列。

我们希望通过自己训练业务相关的语料word2vec模型来获得词嵌入、词相关性查询等。

1.1 准备语料库文件

# 示例:准备自己的一个大规模的语料库文件
df = spark.sql("""
select hist_item_seq from dmb_dev.dmb_dev_item_sku_sequencewhere item_seq_len >=2group by hist_item_seq
""")
df.show(6, False)corpus_file = 'large_corpus_sku_name.txt'
df.toPandas().to_csv(corpus_file, sep=' ', index=False, mode='w',header=False )
"五粮液 金密鉴 52度浓香型高度白酒 500ml 五粮液红密鉴(陈酿)6瓶整箱装,五粮液 金密鉴 52度浓香型高度白酒 500ml 五粮液红密鉴(
陈酿)6瓶整箱装,五粮液(WULIANGYE)酒五粮液密鉴浓香型白酒礼盒白酒整箱口粮酒送礼收藏宴请佳品 52度 500mL 6瓶 红密鉴,五粮液(W
ULIANGYE)酒五粮液密鉴浓香型白酒礼盒白酒整箱口粮酒送礼收藏宴请佳品 52度 500mL 6瓶 红密鉴"
"珍酒贵州珍酒 珍十五 2021年份酒 53度酱香型白酒 送礼商务 53%vol 500mL 6瓶 整箱装,珍酒贵州珍酒 珍十五 2021年份酒 53度酱香型白
酒 送礼商务 53%vol 500mL 6瓶 整箱装,珍酒珍十五 酱香型白酒整箱装 53度 500ml*6瓶酒中珍品 大曲坤沙"
"茅台(MOUTAI) 汉酱酒 酱香型白酒 51度 500ml*6瓶 整箱装,习酒贵州习酒 53度 圆习酒 老习酒 500ml*6  整箱装  酱香型白酒,剑南春 
水晶剑 浓香型白酒 喜宴名酒 38度 500mL 6瓶 整箱装"
"洋河 蓝色经典 天之蓝 42度 520ml*6瓶 整箱装 绵柔浓香型白酒 送礼,洋河【官方授权】蓝色经典 口感绵柔浓香型500ml*2瓶白酒 梦之蓝M3 45度 礼盒装,洋河 梦之蓝M3 45度 500ml*2瓶 礼盒装 绵柔浓香型白酒,洋河梦之蓝M3  52度 500ml*2瓶 礼盒装 绵柔浓香型白酒,洋河
之蓝M3  52度 500ml*2瓶 礼盒装 绵柔浓香型白酒"
"五粮液股份 五粮春 浓香型四川宜宾白酒粮食酒 五粮春 45度  500ml*6瓶整箱,五粮液股份 五粮春 浓香型四川宜宾白酒粮食酒 五粮春 45
度  500ml*6瓶整箱,洋河 梦之蓝M6+ 52度 550ml*2瓶 礼盒装 绵柔浓香型白酒"
"茅台(MOUTAI)53度500ml贵州茅台酒 飞天茅台,茅台(MOUTAI)53度500ml贵州茅台酒 飞天茅台 2023单瓶500ML,茅台(MOUTAI)贵州茅台
酒 飞天茅台礼盒 53度 酱香型白酒 500ml*2两瓶装"

2、全量自训练word2vec模型

2.1 读取语料文件

# 定义函数来读取语料库文件
def read_corpus(file_path):lines = []with open(file_path, 'r', encoding='utf-8') as f:for i, line in enumerate(f):lines.append(line.replace('"','').replace(' ','').strip().split(','))  # 每行按,分割好了return linescorpus = read_corpus(corpus_file)
corpus[:5]            

2.2 训练 Word2Vec 模型

# 设置 Word2Vec 模型的参数
vector_size = 20  # 设置词向量的维度
window = 5  # 窗口大小,控制上下文窗口的大小
min_count = 2  # 最小词频,过滤掉低频词
sg = 0  # 0表示使用 CBOW 模型,1示使用 Skip-Gram 模型# 训练 Word2Vec 模型
model = Word2Vec(corpus, vector_size=vector_size, window=window, min_count=min_count, sg=sg)

2.3 保存和读取模型

# 保存训练好的模型
model.save('word2vec_model_1batch_train_sku_name.w2v')# 模型加载
import gensim
model1 = gensim.models.word2vec.Word2Vec.load('word2vec_model_1batch_train_sku_name.w2v').wv
model1.similarity('茅台贵州茅台53度飞天茅台500ml*1瓶酱香型白酒单瓶装', '剑南春 水晶剑 52度 500ml*6瓶  浓香型白酒 整箱装')

2.4 查看TopN相似和 词与词之间的相似系数

# 查看商品 TopN 相似性商品
model.wv.most_similar('国台 十五年 酱香型白酒 53度 500ml单瓶装 15酱酒 茅台镇纯粮食酱酒', topn=10)for item_ta in ['茅台贵州茅台53度飞天茅台500ml*1瓶酱香型白酒单瓶装', '剑南春 水晶剑 52度 500ml*6瓶  浓香型白酒 整箱装']:# 查看print("\n%s商品 TopN 相似性商品为: "%item_ta)print(model.wv.most_similar(item_ta, topn=10))

2.5 获取用户向量

# 获取用户向量
model.wv['茅台贵州茅台53度飞天茅台500ml*1瓶酱香型白酒单瓶装']

3、增量训练word2vec模型

3.1 增量训练

from gensim.models import Word2Vec
import logging# 设置日志级别以便查看进度
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)# 假设有一个大规模的语料库文件
corpus_file = 'large_corpus_sku_name.txt'# 定义 Word2Vec 模型的参数
vector_size = 100  # 词向量维度
window = 5  # 窗口大小
min_count = 5  # 最小词频,过滤掉低频词
workers = 4  # 使用多少个 CPU 核心来训练模型# 初始化空的 Word2Vec 模型
model = Word2Vec(vector_size=vector_size, window=window, min_count=min_count, workers=workers)# 逐步加载和训练数据
def read_and_train_model(model, corpus_file, chunk_size=10000):with open(corpus_file, 'r', encoding='utf-8') as f:lines = []for i, line in enumerate(f):lines.append(line.strip().replace('"','').split(','))  # 假设每行已经分好词了,按空格分割if i > 0 and i % chunk_size == 0:if model.corpus_count == 0:# 第一次建立词汇表model.build_vocab(lines)else:# 更新词汇表model.build_vocab(lines, update=True)# 训练模型model.train(lines, total_examples=len(lines), epochs=model.epochs)# 清空 lines 列表,以便下一个批次数据lines = []# 处理最后一个不完整的数据块if lines:if model.corpus_count == 0:model.build_vocab(lines)else:model.build_vocab(lines, update=True)model.train(lines, total_examples=len(lines), epochs=model.epochs)# 开始增量学习
read_and_train_model(model, corpus_file)# 保存训练好的模型
model.save('word2vec_model_increase_train_sku_name.w2v')

3.2 查看商品 TopN 相似性商品

# 查看商品 TopN 相似性商品
model.wv.most_similar('茅台(MOUTAI)53度飞天酱香型白酒500ml单瓶装', topn=10)

4、模型局限性: 不能识别不在语料库中的词

5、解决方法:使用fasttext模型

5.1 fasttext模型训练

from gensim.models import FastText
# 模型训练
model = FastText(vector_size=20, window=3, min_count=1)  # instantiate
model.build_vocab(corpus_iterable=corpus)
model.train(corpus_iterable=corpus, total_examples=len(corpus), epochs=10) #或者
model2 = FastText(vector_size=20, window=3, min_count=1, sentences=common_texts, epochs=10)

5.2 查询不在词库中的词向量

print(model.wv['【浓香】五粮液甲辰龙年纪念酒(5瓶装)'])
print(model.wv.most_similar('【浓香】五粮液甲辰龙年纪念酒(5瓶装)', topn=10))

到这里虽然能解决不在词库中词的词向量查询问题,但高相关词(商品)的检索又变得有偏了,缺乏一定的多样性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384931.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET MVC

ASP.NET MVC与.NET Framework关系 .NET Framework是一个庞大的代码库,能为多种编程语言提供支持(如C#、VB、F#等)。同时.NET Framework 提供了多种技术框架,ASP.NET MVC是.NET Framework提供的众多技术框架中的一种,用于开发Web应用。 .NET …

C++如何在main函数开始之前(或结束之后)执行一段逻辑?

1. 问题2. 考察的要点3. 解决策略 3.1. 方案一:使用GCC的拓展功能3.2. 方案二:使用全局变量3.3. 方案三:atexit 4. Demo测试 4.1. 测试代码4.2. 执行结果 5. 程序异常退出场景 5.1. 存在的问题5.2. 解决方案 5.2.1. 原理5.2.2. 示例代码5.2.3…

【计算机网络】数据链路层实验

一:实验目的 1:学习WireShark软件的抓包操作,分析捕获的以太网的MAC帧结构。 2:学习网络中交换机互相连接、交换机连接计算机的拓扑结构,理解虚拟局域网(WLAN)的通信机制。 3:学习…

C++内存管理(候捷)第五讲 笔记

GNU C对allocators的描述 new_allocator 和malloc_allocator,它们都没有特别的动作,无非底部调用operator new和malloc。它们没有用内存池 区别:::operator new是可重载的 智能型的allocator,使用内存池,分一大块然后…

栈和队列<数据结构 C版>

目录 栈(Stack) 栈的结构体 初始化 销毁 入栈 判空 出栈 取栈顶元素 获取栈个数 测试: 队列(Queue) 队列的结构体 单个结点 队列 初始化 销毁 入队列,队尾 判空 出队列,队头 …

HTML常用的转义字符——怎么在网页中写“<div></div>”?

一、问题描述 如果需要在网页中写“<div></div>”怎么办呢&#xff1f; 使用转义字符 如果直接写“<div></div>”&#xff0c;编译器会把它翻译为块&#xff0c;类似的&#xff0c;其他的标签也是如此&#xff0c;所以如果要在网页中写类似于“<div…

计算机网络(Wrong Question)

一、计算机网络体系结构 1.1 计算机网络概述 D 注&#xff1a;计算机的三大主要功能是数据通信、资源共享、分布式处理。&#xff08;负载均衡、提高可靠性&#xff09; 注&#xff1a;几段链路就是几段流水。 C 注&#xff1a;记住一个基本计算公式&#xff1a;若n个分组&a…

Qt源码交叉编译带openssl的Qt版本

一.背景 近期项目由于对接的后台服务是https的&#xff0c;之前交叉编译的Qt是不带openssl的&#xff0c;为了能支持https&#xff0c;必须要重新编译Qt。 二.环境 环境准备&#xff1a; Ubuntu版本 &#xff1a;18.04&#xff1b; openssl 版本&#xff1a;1.1.1.g&#xff1b…

SQL123 SQL类别高难度试卷得分的截断平均值

题目 自测代码 drop table if exists examination_info; CREATE TABLE examination_info (id int PRIMARY KEY AUTO_INCREMENT COMMENT 自增ID,exam_id int UNIQUE NOT NULL COMMENT 试卷ID,tag varchar(32) COMMENT 类别标签,difficulty varchar(8) COMMENT 难度,duration i…

【网络安全的神秘世界】文件包含漏洞

&#x1f31d;博客主页&#xff1a;泥菩萨 &#x1f496;专栏&#xff1a;Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 一、概述 文件包含&#xff1a;重复使用的函数写在文件里&#xff0c;需要使用某个函数时直接调用此文件&#xff0c;而无需再…

【数据结构】哈希表的模拟实现

文章目录 1. 哈希的概念2. 哈希表与哈希函数2.1 哈希冲突2.2 哈希函数2.3 哈希冲突的解决2.3.1 闭散列&#xff08;线性探测&#xff09;2.3.2 闭散列的实现2.3.3 开散列(哈希桶)2.3.4 开散列的实现 2.4 开散列与闭散列比较 1. 哈希的概念 在我们之前所接触到的所有的数据结构…

自动驾驶-机器人-slam-定位面经和面试知识系列05之常考公式推导(02)

这个博客系列会分为C STL-面经、常考公式推导和SLAM面经面试题等三个系列进行更新&#xff0c;基本涵盖了自己秋招历程被问过的面试内容&#xff08;除了实习和学校项目相关的具体细节&#xff09;。在知乎和牛客&#xff08;牛客上某些文章上会附上内推码&#xff09;也会同步…

AI大模型大厂面试真题:「2024大厂大模型技术岗内部面试题+答案」

AI大模型岗的大厂门槛又降低了&#xff01;实在太缺人了&#xff0c;大模型岗位真的强烈建议各位多投提前批&#xff0c;▶️众所周知&#xff0c;2025届秋招提前批已经打响&#xff0c;&#x1f64b;在这里真心建议大家6月7月一定要多投提前批&#xff01; &#x1f4bb;我们…

C# Task.WaitAll 的用法

目录 简介 1.WaitAll(Task[], Int32, CancellationToken) 2.WaitAll(Task[]) 3.WaitAll(Task[], Int32) 4.WaitAll(Task[], CancellationToken) 5.WaitAll(Task[], TimeSpan) 结束 简介 Task.WaitAll 是 C# 中用于并行编程的一个的方法&#xff0c;它属于 System.Threa…

Lombok的认识

Lombok的作用 Lombok是一个Java库&#xff0c;它可以通过简单的注解形式来帮助开发人员简化Java代码的编写&#xff0c;特别是减少模板代码的书写。具体来说&#xff0c;Lombok的主要作用包括&#xff1a; 减少模板代码&#xff1a;Lombok可以通过注解自动生成getter、setter、…

LIS系统源码,实验室管理信息系统LIS,.Net C#语言开发,支持DB2,Oracle,MS SQLServer等主流数据库

实验室管理信息系统LIS源码&#xff0c;采用.Net C#语言开发&#xff0c;C/S架构。支持DB2&#xff0c;Oracle&#xff0c;MS SQLServer等主流数据库。&#xff08;LIS系统全套商业源码&#xff0c;自主版权&#xff0c;多家大型综合医院应用案例&#xff0c;适合二次开发&…

【笔记:3D航路规划算法】二、RRT*

目录 RRT*于RRT的不同之处1、路径优化&#xff1a;2、成本计算&#xff1a;3、重连线步骤&#xff1a; 图解1、初始化2、路径搜索3、效果展示 总结 3D路径规划是在三维空间中寻找从起点到终点的最短或最优路径的一种技术。它广泛应用于无人机导航、机器人运动规划、虚拟现实等领…

人工智能技术的分析与探讨

《人工智能技术的分析与探讨》 摘要&#xff1a; 本文深入探讨了人工智能技术在多个领域的应用&#xff0c;包括智能感知、智能语音、智能问答、智能机器人、智能制造、智能医疗等。详细阐述了这些技术在当前的应用现状和主要场景&#xff0c;展示了一些典型的应用案例&#…

初识git工具~~上传代码到gitee仓库的方法

目录 1.背景~~其安装 2.gitee介绍 2.1新建仓库 2.2进行相关配置 3.拉取仓库 4.服务器操作 4.1克隆操作 4.2查看本地仓库 4.3代码拖到本地仓库 4.4关于git三板斧介绍 4.4.1add操作 4.4.2commit操作 4.4.3push操作 5.一些其他说明 5.1.ignore说明 5.2git log命令 …

大模型额外篇章三:vercel搭建openai中转服务器

文章目录 一、起因和注意1)起因2)注意二、实现方法(原理:透传)1)nginx方案2)node服务3)纯 js 方案4)选择国外的域名服务商(DNS 解析路径缩短,建议方案国外提供 CDN 云服务商结合自建云服务业务做负载均衡)三、实践(vercel部署OpenAI代理服务器)四、测试搭建的Ope…