PCL-基于超体聚类的LCCP点云分割

目录

  • 一、LCCP方法
  • 二、代码实现
  • 三、实验结果
  • 四、总结
  • 五、相关链接

一、LCCP方法

LCCP指的是Local Convexity-Constrained Patch,即局部凸约束补丁的意思。LCCP方法的基本思想是在图像中找到局部区域内的凸结构,并将这些结构用于分割图像或提取特征。这种方法可以帮助识别图像中的凸物体,并对它们进行分割。LCCP方法通常结合了空间和法线信息,以提高图像分割的准确性和稳定性。

LCCP算法大致可以分成两个部分:1.基于超体聚类的过分割。2.在超体聚类的基础上再聚类。
该方法流程图如下:
在这里插入图片描述

二、代码实现

#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/filters/extract_indices.h>
#include <boost/thread/thread.hpp>
#include <stdlib.h>
#include <cmath>
#include <limits.h>
#include <boost/format.hpp>
#include <pcl/console/parse.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/visualization/point_cloud_color_handlers.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/supervoxel_clustering.h>
#include <pcl/segmentation/lccp_segmentation.h>
#include <vtkPolyLine.h> 
#include <pcl/point_cloud.h>
#include <pcl/segmentation/supervoxel_clustering.h>
#include <pcl/visualization/pcl_visualizer.h>using namespace std;
typedef pcl::PointXYZ PointT;
typedef pcl::LCCPSegmentation<PointT>::SupervoxelAdjacencyList SuperVoxelAdjacencyList;
//邻接线条可视化
void addSupervoxelConnectionsToViewer(pcl::PointXYZRGBA& supervoxel_center, pcl::PointCloud<pcl::PointXYZRGBA>& adjacent_supervoxel_centers,std::string supervoxel_name, pcl::visualization::PCLVisualizer::Ptr& viewer)
{vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New();vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New();for (auto adjacent_itr = adjacent_supervoxel_centers.begin(); adjacent_itr != adjacent_supervoxel_centers.end(); ++adjacent_itr){points->InsertNextPoint(supervoxel_center.data);points->InsertNextPoint(adjacent_itr->data);}vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New();polyData->SetPoints(points);polyLine->GetPointIds()->SetNumberOfIds(points->GetNumberOfPoints());for (unsigned int i = 0; i < points->GetNumberOfPoints(); i++)polyLine->GetPointIds()->SetId(i, i);cells->InsertNextCell(polyLine);polyData->SetLines(cells);viewer->addModelFromPolyData(polyData, supervoxel_name);
}int main(int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);pcl::PCDReader reader;// 读入点云PCD文件reader.read("E:****.pcd", *cloud);cout << "Point cloud data: " << cloud->points.size() << " points" << endl;pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);pcl::PointIndices::Ptr inliers(new pcl::PointIndices);// 创建分割对象pcl::SACSegmentation<pcl::PointXYZ> seg;// 可选择配置,设置模型系数需要优化seg.setOptimizeCoefficients(true);// 必须配置,设置分割的模型类型、所用随机参数估计方法seg.setModelType(pcl::SACMODEL_PLANE);seg.setMethodType(pcl::SAC_RANSAC);seg.setDistanceThreshold(0.02);// 距离阈值 单位m。距离阈值决定了点被认为是局内点时必须满足的条件//seg.setDistanceThreshold(0.15);// 距离阈值 单位m。距离阈值决定了点被认为是局内点时必须满足的条件//距离阈值表示点到估计模型的距离最大值。seg.setInputCloud(cloud);//输入点云seg.segment(*inliers, *coefficients);//实现分割,并存储分割结果到点集合inliers及存储平面模型系数coefficientsif (inliers->indices.size() == 0){PCL_ERROR("Could not estimate a planar model for the given dataset.");return (-1);}//***********************************************************************//-----------输出平面模型的系数 a,b,c,d-----------cout << "Model coefficients: " << coefficients->values[0] << " "<< coefficients->values[1] << " "<< coefficients->values[2] << " "<< coefficients->values[3] << endl;cout << "Model inliers: " << inliers->indices.size() << endl;//***********************************************************************// 提取地面pcl::ExtractIndices<pcl::PointXYZ> extract;extract.setInputCloud(cloud);extract.setIndices(inliers);extract.filter(*cloud_filtered);cout << "Ground cloud after filtering: " << endl;cout << *cloud_filtered << std::endl;pcl::PCDWriter writer;writer.write<pcl::PointXYZ>("3dpoints_ground.pcd", *cloud_filtered, false);// 提取除地面外的物体extract.setNegative(true);extract.filter(*cloud_filtered);cout << "Object cloud after filtering: " << endl;cout << *cloud_filtered << endl;//writer.write<pcl::PointXYZ>(".pcd", *cloud_filtered, false);// 点云可视化boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer0(new pcl::visualization::PCLVisualizer("显示点云"));//左边窗口显示输入的点云,右边的窗口显示分割后的点云int v1(0), v2(0);viewer0->createViewPort(0, 0, 0.5, 1, v1);viewer0->createViewPort(0.5, 0, 1, 1, v2);viewer0->setBackgroundColor(0, 0, 0, v1);viewer0->setBackgroundColor(0.3, 0.3, 0.3, v2);pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color_in(cloud, 255, 0, 0);viewer0->addPointCloud<pcl::PointXYZ>(cloud, color_in, "cloud_in", v1);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_in", v1);viewer0->addPointCloud<pcl::PointXYZ>(cloud_filtered, "cloud_out", v2);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0, 255, 0, "cloud_out", v2);viewer0->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_out", v2);while (!viewer0->wasStopped()){viewer0->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}//***********************************************************************//超体聚类 float voxel_resolution = 0.01f;    // 设置体素大小,该设置决定底层八叉树的叶子尺寸float seed_resolution = 0.15f;    // 设置种子大小,该设置决定超体素的大小float color_importance = 0.0f;    // 设置颜色在距离测试公式中的权重,即颜色影响超体素分割结果的比重。 真实点云都是一个颜色,所以这个参数无作用float spatial_importance = 0.9f;  // 设置空间距离在距离测试公式中的权重,较高的值会构建非常规则的超体素,较低的值产生的体素会按照法线float normal_importance = 4.0f;   // 设置法向量的权重,即表面法向量影响超体素分割结果的比重。bool use_single_cam_transform = false;bool use_supervoxel_refinement = false;unsigned int k_factor = 0;//voxel_resolution is the resolution (in meters) of voxels used、seed_resolution is the average size (in meters) of resulting supervoxels  pcl::SupervoxelClustering<PointT> super(voxel_resolution, seed_resolution);super.setUseSingleCameraTransform(use_single_cam_transform);super.setInputCloud(cloud_filtered); //cloud_filteredsuper.setColorImportance(color_importance);//Set the importance of spatial distance for supervoxels.super.setSpatialImportance(spatial_importance);//Set the importance of scalar normal product for supervoxels. super.setNormalImportance(normal_importance);std::map<uint32_t, pcl::Supervoxel<PointT>::Ptr> supervoxel_clusters;super.extract(supervoxel_clusters);std::multimap<uint32_t, uint32_t> supervoxel_adjacency;super.getSupervoxelAdjacency(supervoxel_adjacency);pcl::PointCloud<pcl::PointNormal>::Ptr sv_centroid_normal_cloud = pcl::SupervoxelClustering<PointT>::makeSupervoxelNormalCloud(supervoxel_clusters);cout << "超体素分割的体素个数为:" << supervoxel_clusters.size() << endl;// 获取点云对应的超体素分割标签pcl::PointCloud<pcl::PointXYZL>::Ptr supervoxel_cloud = super.getLabeledCloud();pcl::visualization::PCLVisualizer::Ptr viewer1(new pcl::visualization::PCLVisualizer("VCCS"));viewer1->setWindowName("超体素分割");viewer1->addPointCloud(supervoxel_cloud, "超体素分割");viewer1->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "超体素分割");viewer1->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "超体素分割");//-----------------------------------------获得体素点云的邻接单元----------------------------------------------multimap<uint32_t, uint32_t>SupervoxelAdjacency;super.getSupervoxelAdjacency(SupervoxelAdjacency);for (auto label_itr = SupervoxelAdjacency.cbegin(); label_itr != SupervoxelAdjacency.cend();){uint32_t super_label = label_itr->first;//获取体素单元的标签pcl::Supervoxel<pcl::PointXYZ>::Ptr super_cloud = supervoxel_clusters.at(super_label);//把对应标签内的点云、体素质心、以及质心对应的法向量提取出来pcl::PointCloud<pcl::PointXYZRGBA> adjacent_supervoxel_centers;for (auto adjacent_itr = SupervoxelAdjacency.equal_range(super_label).first; adjacent_itr != SupervoxelAdjacency.equal_range(super_label).second; ++adjacent_itr){pcl::Supervoxel<pcl::PointXYZ>::Ptr neighbor_supervoxel = supervoxel_clusters.at(adjacent_itr->second);adjacent_supervoxel_centers.push_back(neighbor_supervoxel->centroid_);}std::stringstream ss;ss << "supervoxel_" << super_label;addSupervoxelConnectionsToViewer(super_cloud->centroid_, adjacent_supervoxel_centers, ss.str(), viewer1);label_itr = SupervoxelAdjacency.upper_bound(super_label);}// 等待直到可视化窗口关闭while (!viewer1->wasStopped()){viewer1->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}//return 0;//***********************************************************************//LCCP分割float concavity_tolerance_threshold = 10;float smoothness_threshold = 0.8;uint32_t min_segment_size = 0;bool use_extended_convexity = false;bool use_sanity_criterion = false;pcl::LCCPSegmentation<PointT> lccp;lccp.setConcavityToleranceThreshold(concavity_tolerance_threshold);//CC效验beta值lccp.setSmoothnessCheck(true, voxel_resolution, seed_resolution, smoothness_threshold);lccp.setKFactor(k_factor);               //CC效验的k邻点lccp.setInputSupervoxels(supervoxel_clusters, supervoxel_adjacency);lccp.setMinSegmentSize(min_segment_size);//最小分割尺寸lccp.segment();pcl::PointCloud<pcl::PointXYZL>::Ptr sv_labeled_cloud = super.getLabeledCloud();pcl::PointCloud<pcl::PointXYZL>::Ptr lccp_labeled_cloud = sv_labeled_cloud->makeShared();lccp.relabelCloud(*lccp_labeled_cloud);SuperVoxelAdjacencyList sv_adjacency_list;lccp.getSVAdjacencyList(sv_adjacency_list);pcl::visualization::PCLVisualizer::Ptr viewer2(new pcl::visualization::PCLVisualizer("LCCP超体素分割"));viewer2->setWindowName("LCCP超体素分割");viewer2->addPointCloud(lccp_labeled_cloud, "LCCP超体素分割");viewer2->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "LCCP超体素分割");viewer2->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "LCCP超体素分割");// 等待直到可视化窗口关闭while (!viewer2->wasStopped()){viewer2->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(1000));}return 0;}

三、实验结果

原数据
原数据
去除地面后
在这里插入图片描述
超体聚类过分割
在这里插入图片描述
LCCP分割
在这里插入图片描述

四、总结

从实验结果来看,LCCP算法在相似物体场景分割方面有着较好的表现,对于颜色类似但棱角分明的物体可使用该算法。

五、相关链接

[1]PCL-低层次视觉-点云分割(超体聚类)
[2]PCL_使用LCCP进行点云分割

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/385419.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

入门 PyQt6 看过来(案例)13~ 制作一个颜色调节器

本文给大家带来一个利用pyqt制作的颜色调节器&#xff0c;通过拨动滚动条或者旋钮就可以调整rgb三色进行颜色的微调&#xff0c;效果如下&#xff1a; 本文实现的是不同的UI设计&#xff0c;实现的相同的功能&#xff0c;我们先分析以下思路&#xff1a; 首先进行UI页面设计分析…

SSL/TLS和SSL VPN

1、SSL/TLS SSL安全套接字层&#xff1a;是一种加密协议&#xff0c;用于在网络通信中建立安全连接。它在应用层和传输层&#xff08;TCP/IP&#xff09;之间提供数据加密、服务器身份验证以及信息完整性验证 SSL只保护TCP流量&#xff0c;不保护UDP协议 TLS&#xff1a;传输层…

VulnHub:cengbox1

靶机下载地址&#xff0c;下载完成后&#xff0c;用VirtualBox打开靶机并修改网络为桥接即可搭建成功。 信息收集 主机发现和端口扫描 扫描攻击机&#xff08;192.168.31.218&#xff09;同网段存活主机确认目标机ip&#xff0c;并对目标机进行全面扫描。 nmap 192.168.31.…

【VS2019安装+QT配置】

【VS2019安装QT配置】 1. 前言2. 下载visual studio20193. visual studio2019安装4. 环境配置4.1 系统环境变量配置4.2 qt插件开发 5. Visual Studio导入QT项目6. 总结 1. 前言 前期安装了qt&#xff0c;发现creator编辑器并不好用&#xff0c;一点都不时髦。在李大师的指导下&…

[网鼎杯 2020 朱雀组]Nmap(详细解读版)

这道题考察nmap的一些用法,以及escapeshellarg和escapeshellcmd两个函数的绕过&#xff0c;可以看这里PHP escapeshellarg()escapeshellcmd() 之殇 (seebug.org) 两种解题方法&#xff1a; 第一种通过nmap的-iL参数读取扫描一个文件到指定文件中第二种是利用nmap的参数写入we…

昇思25天学习打卡营第1天|快速入门-构建基于MNIST数据集的手写数字识别模型

非常感谢华为昇思大模型平台和CSDN邀请体验昇思大模型&#xff01;从今天起&#xff0c;我将以打卡的方式&#xff0c;结合原文搬运和个人思考&#xff0c;分享25天的学习内容与成果。为了提升文章质量和阅读体验&#xff0c;我会将思考部分放在最后&#xff0c;供大家探索讨论…

java-数据结构与算法-02-数据结构-05-栈

文章目录 1. 栈1. 概述2. 链表实现3. 数组实现4. 应用 2. 习题E01. 有效的括号-Leetcode 20E02. 后缀表达式求值-Leetcode 120E03. 中缀表达式转后缀E04. 双栈模拟队列-Leetcode 232E05. 单队列模拟栈-Leetcode 225 1. 栈 1. 概述 计算机科学中&#xff0c;stack 是一种线性的…

[python游戏开发]用Python代码制作中国象棋游戏,适合新手小白练手

Pygame 做的中国象棋&#xff0c;一直以来喜欢下象棋&#xff0c;写了 python 就拿来做一个试试&#xff0c;水平有限&#xff0c;希望源码能帮助大家更好的学习 python。总共分为四个文件&#xff0c;chinachess.py 为主文件&#xff0c;constants.py 数据常量&#xff0c;pie…

新版海螺影视主题模板M3.1全解密版本多功能苹果CMSv10后台自适应主题

苹果CMS2022新版海螺影视主题M3.1版本&#xff0c;这个主题我挺喜欢的&#xff0c;之前也有朋友给我提供过原版主题&#xff0c;一直想要破解但是后来找了几个SG11解密的大哥都表示解密需要大几百大洋&#xff0c;所以一直被搁置了。这个版本是完全解密的&#xff0c;无需SG11加…

前端模块化CommonJS、AMD、CMD、ES6

在前端开发中&#xff0c;模块化是一种重要的代码组织方式&#xff0c;它有助于将复杂的代码拆分成可管理的小块&#xff0c;提高代码的可维护性和可重用性。CommonJS、AMD&#xff08;异步模块定义&#xff09;和CMD&#xff08;通用模块定义&#xff09;是三种不同的模块规范…

1、hadoop环境搭建

1、环境配置 ip(/etc/sysconfig/network-scripts) # 网卡1 DEVICEeht0 TYPEEthernet ONBOOTyes NM_CONTROLLEDyes BOOTPROTOstatic IPADDR192.168.59.11 GATEWAY192.168.59.1 NETMASK 255.255.255.0 # 网卡2 DEVICEeht0 TYPEEthernet ONBOOTyes NM_CONTROLLEDyes BOOTPROTOdh…

【React1】React概述、基本使用、脚手架、JSX、组件

文章目录 1. React基础1.1 React 概述1.1.1 什么是React1.1.2 React 的特点声明式基于组件学习一次,随处使用1.2 React 的基本使用1.2.1 React的安装1.2.2 React的使用1.2.3 React常用方法说明React.createElement()ReactDOM.render()1.3 React 脚手架的使用1.3.1 React 脚手架…

基于tkinter的学生信息管理系统之登录界面和主界面菜单设计

目录 一、tkinter的介绍 二、登陆界面的设计 1、登陆界面完整代码 2、部分代码讲解 3、登录的数据模型设计 4、效果展示 三、学生主界面菜单设计 1、学生主界面菜单设计完整代码 2、 部分代码讲解 3、效果展示 四、数据库的模型设计 欢迎大家进来学习和支持&#xff01…

从食堂采购系统源码到成品:打造供应链采购管理平台实战详解

本篇文章&#xff0c;笔者将详细介绍如何从食堂采购系统的源码开始&#xff0c;逐步打造一个完备的供应链采购管理平台&#xff0c;帮助企业实现采购流程的智能化和高效化。 一、需求分析与规划 一般来说&#xff0c;食堂采购系统需要具备以下基本功能&#xff1a; 1.供应商…

第15周 Zookeeper分布式锁与变种多级缓存

1. Zookeeper介绍 1.1 介绍 1.2 应用场景简介 1.3 zookeeper工作原理 1.4 zookeeper特点

AI的欺骗游戏:揭示多模态大型语言模型的易受骗性

人工智能咨询培训老师叶梓 转载标明出处 多模态大型语言模型&#xff08;MLLMs&#xff09;在处理包含欺骗性信息的提示时容易生成幻觉式响应。尤其是在生成长响应时&#xff0c;仍然是一个未被充分研究的问题。来自 Apple 公司的研究团队提出了MAD-Bench&#xff0c;一个包含8…

DLMS/COSEM中公开密钥算法的使用_椭圆曲线加密法

1.概述 椭圆曲线密码涉及有限域上的椭圆曲线上的算术运算。椭圆曲线可以定义在任何数字域上(实数、整数、复数)&#xff0c;但在密码学中&#xff0c;椭圆曲线最常用于有限素数域。 素数域上的椭圆曲线由一组实数(x, y)组成&#xff0c;满足以下等式: 方程的所有解的集合构成…

内网漏扫工具fscan

一、介绍&#xff1a; fscan是一款内网综合扫描工具&#xff0c;方便一键自动化、全方位漏扫扫描。支持主机存活探测、端口扫描、常见服务的爆破、ms17010、redis批量写公钥、计划任务反弹shell、读取win网卡信息、web指纹识别、web漏洞扫描、netbios探测、域控识别等功能。 …

Pytorch使用教学8-张量的科学运算

在介绍完PyTorch中的广播运算后&#xff0c;继续为大家介绍PyTorch的内置数学运算&#xff1a; 首先对内置函数有一个功能印象&#xff0c;知道它的存在&#xff0c;使用时再查具体怎么用其次&#xff0c;我还会介绍PyTorch科学运算的注意事项与一些实用小技巧 1 基本数学运算…

【高中数学/反比例函数/增减区间】从熟悉的y=1/x到陌生的y=x/(1-x)的演变

【题目】 求yx/(1-x)的递增区间&#xff1f; 【解答】 此问题只要能画出yx/(1-x)的大致图像就能解答&#xff0c;首先我们需要将分式化简&#xff1a; yx/(1-x)(x-11)/(1-x)-11/(1-x) 从新的函数式中我们可以判断这也是一个反比例函数&#xff0c;可以从y1/x演变过来。 下…