路径规划——广度优先搜索与深度优先搜索
https://www.hello-algo.com/chapter_graph/graph_traversal/
1.广度优先搜索 Breath-First-Search
在图论中也称为广度优先遍历,类似于树的层序遍历。
算法原理
从起始节点出发,首先访问它的邻近节点,然后依次访问这些邻近节点的邻近节点,直到所有节点都被访问到。广度优先搜索是从一个起始节点开始逐层地访问所有节点的。
广度优先搜索是一种图遍历算法,每向前走一步可能访问一批顶点,不像深度优先搜索那样有回退的情况,因此它不是一个递归的算法。为了实现逐层的访问,算法必须借助一个辅助队列,以记忆正在访问的顶点的下一层顶点。
现有如下节点图Graph,要求从A点开始搜索,搜索全部节点,将节点搜索序列作为结果输出。
将上图整理得下图
那么整个广度优先搜索的过程如下图:
算法实现
from collections import dequedef bfs(graph, start):# 初始化队列,并将起始节点加入队列queue = deque([start])# 初始化访问顺序列表visited = [start]while queue:# 取出队列中的当前节点current = queue.popleft()# 遍历当前节点的所有邻居节点for neighbor in graph[current]:if neighbor not in visited: # 如果邻居节点尚未被访问# 将邻居节点加入队列queue.append(neighbor)# 记录访问顺序visited.append(neighbor)return visited# 示例图的定义
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 使用BFS算法
start_node = 'A'
visited = bfs(graph, start_node)
print(f"Visit order: {visited}")
寻找在上图中A->E的最短路径:
from collections import dequedef bfs(graph, start, goal):# 初始化队列,并将起始节点加入队列queue = deque([start])# 初始化访问顺序列表visited = [start]# 初始化父节点集合previous = {start: None}while queue:# 取出队列中的当前节点current = queue.popleft()if current == goal:break# 遍历当前节点的所有邻居节点for neighbor in graph[current]:if neighbor not in visited: # 如果邻居节点尚未被访问# 将邻居节点加入队列queue.append(neighbor)# 记录访问顺序visited.append(neighbor)# 将当前节点保存为邻节点的父节点previous[neighbor] = currentpath = []current = goal# Find the full path by backtrackingwhile current is not None:path.append(current)current = previous.get(current)path = path[::-1]distance = len(path)-1return path,distance# 示例图的定义
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 使用BFS算法
start = 'A'
goal = 'E'
path,distance = bfs(graph, start, goal)
print("Distance: ",distance)
print(f"Short path: {path}")
输出结果:
利用BFS算法寻找栅格地图中两点之间的最短路径的代码实现如下:
from collections import deque
import numpy as npclass BFS:def __init__(self, grid, board_size, start, goal):self.grid = gridself.board_size = board_sizeself.start = startself.goal = goaldef plan(self):"""Use BFS algorithm to plan path in grid map.Since the cost between every two neighbouring nodes is 1 which is different from Dijkstra,only four directions including up, right, down, left are allowed"""visited = set() # Used to mark nodes that are visitedself.searched = [] # Used to record nodes that are searchedprevious_nodes = {self.start: None}que = deque([self.start])visited.add(self.start)while que:# Select the node closest to the start nodecurrent_node = que.popleft()# Append the current node into searched nodesself.searched.append(current_node)# Break when the current node is the goalif current_node == self.goal:break# Find the neighbors of the current node and determine in turn if they have already been visitedneighbors = self.get_neighbors(current_node)for neighbor in neighbors:# If the current node has been visited, skip itif neighbor in visited:continueprevious_nodes[neighbor] = current_nodeque.append(neighbor)visited.add(neighbor) # mark the neighbor is visitedself.path = []current_node = self.goal# Find the full path by backtrackingwhile current_node is not None:self.path.append(current_node)current_node = previous_nodes.get(current_node)self.path = self.path[::-1]return len(self.path)-1def get_neighbors(self, node):neighbors = []next_directions = [(1,0),(0,-1),(-1,0),(0,1)]for next_d in next_directions:neighbor = (node[0] + next_d[0], node[1] + next_d[1])if self.board_size <= neighbor[0] < len(self.grid)-self.board_size and self.board_size <= neighbor[1] < len(self.grid[0])-self.board_size:if self.grid[neighbor[0]][neighbor[1]] == 0:neighbors.append(neighbor)return neighbors
2.深度优先搜索 Depth-First-Search
在树和图论的数据结构中也称为深度优先遍历。
算法原理
从起始节点出发,沿着一个分支深入到尽可能深的节点,然后回溯并继续访问其他分支。这种"走到尽头再返回"的算法范式通常是基于递归来实现的。
同样以上述例子为例,整个深度优先搜索的过程如下:
算法实现
from collections import dequedef dfs(graph, current_node, visited):visited.append(current_node)# 遍历当前节点的所有邻居节点for neighbor in graph[current_node]:if neighbor in visited: # 如果邻居节点已被访问则跳过continuedfs(graph, neighbor, visited)return visited# 示例图的定义
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 使用DFS算法
start_node = 'A'
visited = dfs(graph, start_node, [])
print(f"Visit order: {visited}")
寻找在上图中A->E的最短路径:
from collections import dequedef dfs(graph, current_node, goal, path, shortest_path, distance):path.append(current_node)if current_node == goal:if len(path)-1<distance:shortest_path[:] = pathdistance = len(shortest_path)-1path.pop()return shortest_path, distance# 遍历当前节点的所有邻居节点for neighbor in graph[current_node]:if neighbor in path: # 如果邻居节点已被访问则跳过continueshortest_path, distance = dfs(graph, neighbor, goal, path, shortest_path, distance)path.pop()return shortest_path, distance# 示例图的定义
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 使用DFS算法
start_node = 'A'
goal = 'F'
path = []
distance = float('inf')
shortest_path, distance = dfs(graph, start_node, goal, path, [], distance)
print("Distance: ",distance)
print(f"Short path: {shortest_path}")
输出结果:
虽然DFS可以找到最短路径,但是需要找到所有的路径之后才能知道最短路径,所有非常耗时,例如在上述BFS中的栅格地图中寻找起点到终点的最短路径是非常困难的,尽管也可以找到最短路径但是非常耗时,所以一般不会使用DFS寻找最短路径。