GPT-4o System Card is released

GPT-4o System Card is released, including red teaming, frontier risk evaluations, and other key practices for industrial-strength Large Language Models. https://openai.com/index/gpt-4o-system-card/

报告链接

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

企业级生成式人工智能LLM大模型技术、算法及案例实战线上直播课,解密企业级可靠可信赖的硬核落地技术

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

LlaMA 3 系列博客

Gavin大咖课程作业:CrewAI项目初体验

Gavin大咖亲自授课:LangGraph+CrewAI项目实战

Gavin大咖亲自授课:将大语言模型与直接偏好优化对齐

隆重推出 Llama 3.1: 迄今为止最强大的开源模型

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝

Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(一)ReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(二) PyReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(四) ReFT 微调训练及模型推理

Llama模型家族之Stanford NLP ReFT源代码探索 (一)数据预干预

Llama模型家族之Stanford NLP ReFT源代码探索 (二)interventions.py 代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene学习

Llama模型家族之Stanford NLP ReFT源代码探索 (五)代码库简介

Llama模型家族之Stanford NLP ReFT源代码探索 (六)pyvene 基本干预示例-1

Llama模型家族之Stanford NLP ReFT源代码探索 (七)pyvene 基本干预示例-2

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (一)Vertex AI 简介

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (二)Generative AI on Vertex AI 概览

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (三)Vertex AI 调优模型概览

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (四) Vertex AI 如何将 LLM 提升到新水平

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (五) Vertex AI:你的微调伙伴

Generative AI原理本质、技术内核及工程实践之基于Vertex AI的大模型 (六)

LangChain 2024 最新发布:LangGraph 多智能体工作流(Multi-Agent Workflows)

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(一)简介

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(二)创建代理

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(三)定义工具

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(四) 定义工具节点及边逻辑

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(五)定义图

大模型应用开发技术:Multi-Agent框架流程、源码及案例实战(六) 多智能体通用统计

大模型应用开发技术:LangChain+LangGraph+LangSmith接入Ernie Speed 大模型 Multi-Agent框架案例实战(一)

大模型应用开发技术:LangChain+LangGraph+LangSmith接入Ernie Speed 大模型 Multi-Agent框架案例实战(二)实战代码

大模型应用开发技术:LangGraph 使用工具增强聊天机器人(二)

大模型应用开发技术:LangGraph 为聊天机器人添加内存(三)

大模型应用开发技术:LangGraph Human-in-the-loop(四)

大模型应用开发技术:LangGraph 手动更新状态 (五)

大模型应用开发技术:LangGraph 自定义状态(六)

大模型应用开发技术:LangGraph 时间旅行(七)

大模型应用开发技术:LlamaIndex 案例实战(一)简介

大模型应用开发技术:LlamaIndex 案例实战(二) 功能发布和增强

大模型应用开发技术:LlamaIndex 案例实战(三)LlamaIndex RAG Chat

大模型微调:零样本提示在Amazon SageMaker JumpStart中的Flan-T5基础模型中的应用(一)

大模型微调:零样本提示在Amazon SageMaker JumpStart中的Flan-T5基础模型中的应用(二)

大模型微调:零样本提示在Amazon SageMaker JumpStart中的Flan-T5基础模型中的应用(三)

大模型应用开发 Giskard之机器学习中的biases (偏见)从何而来?(一)

ollama+llama3.1 405B 简介

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/407788.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5用蓝图实现物体A始终朝向物体B |Find Look at Rotation|

非常常用的蓝图节点 |Find Look at Rotation|:获取 物体A 到 物体B 的Rotator。 Tick中将算出的Rotator设置给物体A,即可实现永远朝向物体B

C++STL之map的使用详解

简介&#xff1a;map底层实现为红黑树&#xff0c;增删查的时间复杂度&#xff1a;O(logn), key是有序的&#xff0c;默认升序 一、初始化 #include<iostream> #include<map> #include<string> using namespace std; int main() {std::map<int, std::st…

楼顶气膜羽毛球馆:城市健身新空间—轻空间

随着城市化进程的加快&#xff0c;城市土地资源愈发紧张&#xff0c;如何高效利用有限的空间成为一大挑战。楼顶气膜羽毛球馆作为一种创新的体育场馆建设方式&#xff0c;凭借其独特的优势&#xff0c;逐渐成为城市健身的新宠。它不仅有效利用了楼顶闲置空间&#xff0c;还为市…

鸿蒙Harmony编程开发:服务端证书锁定防范中间人攻击示例

1. TLS通讯中间人攻击及防范简介 TLS安全通讯的基础是基于对操作系统或者浏览器根证书的信任&#xff0c;如果CA证书签发机构被入侵&#xff0c;或者设备内置证书被篡改&#xff0c;都会导致TLS握手环节面临中间人攻击的风险。其实&#xff0c;这种风险被善意利用的情况还是很…

【25届秋招】饿了么0817算法岗笔试

目录 1. 第一题2. 第二题3. 第三题 ⏰ 时间&#xff1a;2024/08/17 &#x1f504; 输入输出&#xff1a;ACM格式 ⏳ 时长&#xff1a;100min 本试卷还有单选和多选部分&#xff0c;但这部分比较简单就不再展示。 最近终于有时间继续整理之前的笔试题了&#xff0c;因为时间仓促…

数学建模之数据分析【九】:数据清理概述

文章目录 一、什么是数据清理二、为什么数据清理很重要三、执行数据清洁的步骤四、如何执行数据清理五、数据清理的Python库实现5.1 数据检查与探索5.2 使用df.info()检查数据信息5.3 检查分类和数字列5.4 检查分类列中唯一值的总数5.5 执行数据清理的步骤5.5.1 删除所有上述不…

C++ 设计模式——观察者模式

观察者模式 观察者模式主要组成部分例一&#xff1a;工作流程第一步&#xff1a;定义观察者接口第二步&#xff1a;定义主题接口第三步&#xff1a;实现具体主题第四步&#xff1a;实现具体观察者第五步&#xff1a;主函数UML 图UML 图解析 例二&#xff1a;工作流程第一步&…

动态规划之买卖股票篇-代码随想录算法训练营第三十八天| 买卖股票的最佳时机ⅠⅡⅢⅣ,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费

121. 买卖股票的最佳时机 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 讲解视频&#xff1a; 动态规划之 LeetCode&#xff1a;121.买卖股票的最佳时机1 题目描述&#xff1a; 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定…

[数据集][目标检测]电力场景输电线异物检测数据集VOC+YOLO格式2060张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2060 标注数量(xml文件个数)&#xff1a;2060 标注数量(txt文件个数)&#xff1a;2060 标注…

K8s节点状态 NotReady排查

k8s节点由 Ready变成 NotReady izbp12ghzy6koox6fqt0suz NotReady slave 97d v1.23.3 izbp12ghzy6koox6fqt0svz Ready control-plane,master 98d v1.23.3节点进入 NotReady 状态可能是由于多种原因引起的&#xff0c;尤其是在资源过量分配&am…

环绕音效是什么意思,电脑环绕音效怎么开

Boom 3D是一款专业的音效增强软件&#xff0c;它拥有先进的音效处理技术和丰富的音效设置选项&#xff0c;可以为用户打造出高度定制化的音频体验&#xff0c;Boom 3D还拥有简洁直观的界面&#xff0c;操作简单易懂&#xff0c;即使是音频技术的新手也能轻松上手。本篇文章就将…

微信小程序引入全局环境变量

有时候一套代码要在多个小程序appId下使用,其中又有一些数据(文字)需要做区分.可以使用下面的方法 把要配置的数据以export default 形式导出 在app.js中,引入project.config.0.js文件,将导出的数据放在globalData中 在页面目录中,即可利用getApp()方法使用全局变量 也可以放数…

buuctf [HDCTF2019]Maze

前言&#xff1a;做题笔记。 常规 下载 解压 查壳 脱壳后用32IDA Pro打开。 得&#xff0c;迷宫类型的题目。(字符串有说。) 咳&#xff0c;此前思路对半分不行了。。。 合理猜测步数为&#xff1a;14。 那可以看看7 * 10的迷宫类型。(手动猜测的时候去取倍数如&#xff1a;0 2…

【三维深度补全模型】PENet

【版权声明】本文为博主原创文章&#xff0c;未经博主允许严禁转载&#xff0c;我们会定期进行侵权检索。 参考书籍&#xff1a;《人工智能点云处理及深度学习算法》 本文为专栏《Python三维点云实战宝典》系列文章&#xff0c;专栏介绍地址“【python三维深度学习】python…

shell脚本中$0 $1 $# $@ $* $? $$ 的各种符号意义详解

文章目录 一、概述1.1、普通字符1.2、元字符 二、转义字符$2.1、实例12.2、实例22.3、实例32.4、实例42.5、实例5 三、linux命令执行返回值$?说明 一、概述 shell中有两类字符&#xff1a;普通字符、元字符。 1.1、普通字符 在Shell中除了本身的字面意思外没有其他特殊意义…

校友林小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;树木管理管理&#xff0c;所属科管理&#xff0c;树木领取管理&#xff0c;树跟踪状态管理&#xff0c;用户信息统计管理&#xff0c;树木捐款管理&#xff0c;留言板管理 微信端…

基于vue框架的毕业设计管理系统5n36i(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;学生,教师,课题信息,题目分类,选题信息,任务书,中期检查,提交论文,论文成绩,答辩成绩,校园公告,教研主任,申报课题 开题报告内容 基于Vue框架的毕业设计管理系统开题报告 一、引言 随着高等教育的不断发展&#xff0c;毕业设计作为培…

AITDK SEO扩展:为网站优化提供一站式解决方案

AITDK SEO扩展&#xff1a;为网站优化提供一站式解决方案 想提升你的网站在搜索引擎中的排名&#xff1f;让我们来看看AITDK SEO扩展&#xff0c;它是你网站优化的得力助手&#xff01;在这篇文章中&#xff0c;我将为你介绍AITDK SEO扩展的功能特点&#xff0c;以及它如何帮助…

警惕!低血糖来袭,这些“隐形信号”你中招了吗?

在这个快节奏的时代&#xff0c;我们往往忙于工作、学习与生活&#xff0c;却容易忽视身体发出的微妙警告。其中&#xff0c;低血糖作为一种常见但易被忽视的健康问题&#xff0c;正悄悄影响着许多人的生活质量。今天&#xff0c;就让我们一起揭开低血糖的神秘面纱&#xff0c;…

Java:包装类

文章目录 引入原因包装类代码演示包装类的其他常见操作 使用到的有关ArrayList的方法 引入原因 泛型和集合不支持基本数据类型&#xff0c;只能支持引用数据类型 包装类 包装类就是把基本类型的数据包装成对象 就是说不再是一个int类型的数&#xff0c;而是一个Integer类型的…