鸿蒙内核源码分析(用户态锁篇) | 如何使用快锁Futex(上)

快锁上下篇

鸿蒙内核实现了Futex,系列篇将用两篇来介绍快锁,主要两个原因:

  • 网上介绍Futex的文章很少,全面深入内核介绍的就更少,所以来一次详细整理和挖透。
  • 涉及用户态和内核态打配合,共同作用,既要说用户态的使用又要说清楚内核态的实现。
    本篇为上篇,用户态下如何使用Futex,并借助一个demo来说清楚整个过程。

基本概念

Futex(Fast userspace mutex,用户态快速互斥锁),系列篇简称 快锁 ,是一个在Linux上实现锁定和构建高级抽象锁如信号量和POSIX互斥的基本工具,它第一次出现在linux内核开发的2.5.7版;其语义在2.5.40固定下来,然后在2.6.x系列稳定版内核中出现,是内核提供的一种系统调用能力。通常作为基础组件与用户态的相关锁逻辑结合组成用户态锁,是一种用户态与内核态共同作用的锁,其用户态部分负责锁逻辑,内核态部分负责锁调度。

当用户态线程请求锁时,先在用户态进行锁状态的判断维护,若此时不产生锁的竞争,则直接在用户态进行上锁返回;反之,则需要进行线程的挂起操作,通过Futex系统调用请求内核介入来挂起线程,并维护阻塞队列。

当用户态线程释放锁时,先在用户态进行锁状态的判断维护,若此时没有其他线程被该锁阻塞,则直接在用户态进行解锁返回;反之,则需要进行阻塞线程的唤醒操作,通过Futex系统调用请求内核介入来唤醒阻塞队列中的线程。

存在意义

  • 互斥锁(mutex)是必须进入内核态才知道锁可不可用,没人跟你争就拿走锁回到用户态,有人争就得干等 (包括 有限时间等和无限等待两种,都需让出CPU执行权) 或者放弃本次申请回到用户态继续执行。那为何互斥锁一定要陷入内核态检查呢? 互斥锁(mutex) 本质是竞争内核空间的某个全局变量(LosMux结构体)。应用程序也有全局变量,但其作用域只在自己的用户空间中有效,属于内部资源,有竞争也是应用程序自己内部解决。而应用之间的资源竞争(即内核资源)就需要内核程序来解决,内核空间只有一个,内核的全局变量当然要由内核来管理。应用程序想用内核资源就必须经过系统调用陷入内核态,由内核程序接管CPU,所谓接管本质是要改变程序状态寄存器,CPU将从用户态栈切换至内核态栈运行,执行完成后又要切回用户态栈中继续执行,如此一来栈间上下文的切换就存在系统性能的损耗。没看明白的请前往系列篇 (互斥锁篇) 翻看。

  • 快锁 解决思路是能否在用户态下就知道锁可不可用,因为竞争并不是时刻出现,跑到内核态一看其实往往没人给你争,白跑一趟来回太浪费性能。那问题来了,用户态下如何知道锁可不可用呢? 因为不陷入内核态就访问不到内核的全局变量。而自己私有空间的变量对别的进程又失效不能用。越深入研究内核越有一种这样的感觉,内核的实现可以像数学一样推导出来,非常有意思。数学其实是基于几个常识公理推导出了整个数学体系,因为不如此逻辑就无法自洽。如果对内核有一定程度的了解,这里自然能推导出可以借助 共享内存 来实现!

使用过程

看个linux futex 官方demo详细说明下用户态下使用Futex的整个过程,代码不多,但涉及内核的知识点很多,通过它可以检验出内核基本功扎实程度。

//futex_demo.c
#define _GNU_SOURCE
#include <stdio.h>
#include <errno.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <linux/futex.h>
#include <sys/time.h>
#define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \} while (0)
static uint32_t *futex1, *futex2, *iaddr;
/// 快速系统调用
static int futex(uint32_t *uaddr, int futex_op, uint32_t val,const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{return syscall(SYS_futex, uaddr, futex_op, val,timeout, uaddr2, val3);
}
/// 申请快锁
static void fwait(uint32_t *futexp)
{long s;while (1) {const uint32_t one = 1;if (atomic_compare_exchange_strong(futexp, &one, 0))break; //申请快锁成功//申请快锁失败,需等待s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);if (s == -1 && errno != EAGAIN)errExit("futex-FUTEX_WAIT");}
}
/// 释放快锁
static void fpost(uint32_t *futexp)
{long s;const uint32_t zero = 0;if (atomic_compare_exchange_strong(futexp, &zero, 1)) {//释放快锁成功s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0);//唤醒等锁 进程/线程if (s  == -1)errExit("futex-FUTEX_WAKE");}
}
/// 父子进程竞争快锁
int main(int argc, char *argv[])
{pid_t childPid;int nloops;setbuf(stdout, NULL);nloops = (argc > 1) ? atoi(argv[1]) : 3;iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,MAP_ANONYMOUS | MAP_SHARED, -1, 0);//创建可读可写匿名共享内存if (iaddr == MAP_FAILED)errExit("mmap");futex1 = &iaddr[0]; //绑定锁一地址futex2 = &iaddr[1]; //绑定锁二地址*futex1 = 0; // 锁一不可申请 *futex2 = 1; // 锁二可申请childPid = fork();if (childPid == -1)errExit("fork");if (childPid == 0) {//子进程返回for (int j = 0; j < nloops; j++) {fwait(futex1);//申请锁一printf("子进程  (%jd) %d\n", (intmax_t) getpid(), j);fpost(futex2);//释放锁二}exit(EXIT_SUCCESS);}// 父进程返回执行for (int j = 0; j < nloops; j++) {fwait(futex2);//申请锁二printf("父进程 (%jd) %d\n", (intmax_t) getpid(), j);fpost(futex1);//释放锁一}wait(NULL);exit(EXIT_SUCCESS);
}

代码在wsl2上编译运行结果如下:

root@DESKTOP-5PBPDNG:/home/turing# gcc ./futex_demo.c -o futex_demo
root@DESKTOP-5PBPDNG:/home/turing# ./futex_demo
父进程 (283) 0
子进程 (284) 0
父进程 (283) 1
子进程 (284) 1
父进程 (283) 2
子进程 (284) 2

解读

  • 通过系统调用mmap 创建一个可读可写的共享内存iaddr[2]整型数组,完成两个futex锁的初始化。内核会在内存分配一个共享线性区(MAP_ANONYMOUS | MAP_SHARED),该线性区可读可写( PROT_READ | PROT_WRITE)

    futex1 = &iaddr[0]; //绑定锁一地址
    futex2 = &iaddr[1]; //绑定锁二地址
    *futex1 = 0; // 锁一不可申请 
    *futex2 = 1; // 锁二可申请

    如此futex1futex2有初始值并都是共享变量,想详细了解mmap内核实现的可查看系列篇 (线性区篇)(共享内存篇) 有详细介绍。

  • childPid = fork(); 创建了一个子进程,fork会拷贝父进程线性区的映射给子进程,导致的结果就是父进程的共享线性区到子进程这也是共享线性区,映射的都是相同的物理地址。对fork不熟悉的请前往翻看,系列篇 (fork篇)| 一次调用,两次返回 专门说它。

  • fwait(申请锁)与fpost(释放锁)成对出现,单独看下申请锁过程

    /// 申请快锁
    static void fwait(uint32_t *futexp)
    {long s;while (1) {const uint32_t one = 1;if (atomic_compare_exchange_strong(futexp, &one, 0))break; //申请快锁成功//申请快锁失败,需等待s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);if (s == -1 && errno != EAGAIN)errExit("futex-FUTEX_WAIT");}
    }

    死循环的break条件是 atomic_compare_exchange_strong为真,这是个原子比较操作,此处必须这么用,至于为什么请前往翻看系列篇 (原子操作篇)| 谁在为完整性保驾护航 ,注意它是理解Futex的关键所在,它的含义是

    在头文件<stdatomic.h>中定义
    _Bool atomic_compare_exchange_strong(volatile A * obj,C * expected,C desired);

    将所指向的值obj与所指向的值进行原子比较expected,如果相等,则用前者替换前者desired(执行读取 - 修改 - 写入操作)。否则,加载实际值所指向的obj进入*expected(进行负载操作)。
    什么意思 ? 来个直白的解释 :

    • 如果 futexp == 1atomic_compare_exchange_strong返回真,同时将 futexp的值变成0,1代表可以持有锁,一旦持有立即变0,别人就拿不到了。所以此处甚秒。而且这发生在用户态。
    • 如果futexp == 0 atomic_compare_exchange_strong返回假,没有拿到锁,就需要陷入内核态去挂起任务等待锁的释放
    futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0) //执行一个等锁的系统调用

    参数四为NULL代表不在内核态停留直接返回用户态,后续将在内核态部分详细说明。

  • childPid == 0是子进程的返回。不断地申请futex1 释放futex2

    if (childPid == 0) {//子进程返回for (int j = 0; j < nloops; j++) {fwait(futex1);printf("子进程  (%jd) %d\n", (intmax_t) getpid(), j);fpost(futex2);}exit(EXIT_SUCCESS);
    }
  • 最后的父进程的返回,不断地申请futex2 释放futex1

    // 父进程返回执行
    for (int j = 0; j < nloops; j++) {fwait(futex2);printf("父进程 (%jd) %d\n", (intmax_t) getpid(), j);fpost(futex1);
    }
    wait(NULL);
    exit(EXIT_SUCCESS);
  • 两把锁的初值为 *futex1 = 0; *futex2 = 1;,父进程在 fwait(futex2)所以父进程的printf将先执行,*futex2 = 0;锁二变成不可申请,打印完成后释放fpost(futex1)使其结果为*futex1 = 1;表示锁一可以申请了,而子进程在等fwait(futex1),交替下来执行的结果为

      父进程 (283) 0子进程 (284) 0父进程 (283) 1子进程 (284) 1父进程 (283) 2子进程 (284) 2

几个问题

以上是个简单的例子,只发生在两个进程抢一把锁的情况下,如果再多几个进程抢一把锁时情况就变复杂多了。
例如会遇到以下情况:

  • 鸿蒙内核进程池默认上限是64个,除去两个内核进程外,剩下的都归属用户进程,理论上用户进程可以创建很多快锁,这些快锁可以用于进程间(共享快锁)也可以用于线程间(私有快锁),在快锁的生命周期中该如何保存 ?
  • 无锁时,前面已经有进程在申请锁时,如何处理好新等锁进程和旧等锁进程的关系 ?
  • 释放锁时,需要唤醒已经在等锁的进程,唤醒的顺序由什么条件决定 ?

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

在这里插入图片描述

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

在这里插入图片描述

鸿蒙开发面试真题(含参考答案):https://gitcode.com/HarmonyOS_MN

在这里插入图片描述

OpenHarmony 开发环境搭建

图片

《OpenHarmony源码解析》:https://gitcode.com/HarmonyOS_MN

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN

图片

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/407916.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解滑动窗口算法及其经典应用

文章目录 什么是滑动窗口&#xff1f;经典题型分析与讲解**1. 长度最小的子数组****2. 无重复字符的最长子串****3. 最长重复子数组****4. 将x减到0的最小操作数**5. 水果成篮 (LeetCode 904)6. 滑动窗口最大值 (LeetCode 239)7. 字符串中的所有字母异位词 (LeetCode 剑指 Offe…

区块链基础通识(1)——分布式系统的共识问题

分布式系统 我们最初了解区块链的时候&#xff0c;很多人会形容这个区块链是一个“分布式的不可篡改账本”&#xff0c;这是一个很形象的说法&#xff0c;但是我认为更为准确的形容是“所有节点共同维护的状态机”。为什么分布式和区块链不能划等号呢&#xff1f; 两种常见的…

数字身份革命:探索Web3对个人隐私的保护

在数字化时代&#xff0c;个人隐私和数据保护成为越来越重要的话题。随着Web3的兴起&#xff0c;这一领域正在经历一场深刻的变革。Web3不仅仅是技术的演进&#xff0c;更是对个人隐私保护的一次革命性革新。本文将探讨Web3如何通过去中心化技术重新定义数字身份&#xff0c;并…

npm install报错,解决记录:11个步骤诊断和解决问题

在处理npm install报错时&#xff0c;可以遵循以下步骤来诊断和解决问题&#xff1a; 查看错误信息&#xff1a; 错误信息通常会给出问题的线索&#xff0c;例如依赖包版本冲突、网络问题、权限问题等。 更新npm和Node.js&#xff1a; 首先尝试更新npm和Node.js到最新版本&…

电子电气架构--- 智能汽车电子架构的核心诉求

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一个人的特殊竞争力&#xff0c;任何消耗你的人和事&#xff0c;多看一眼都是你的不…

Windows平台SDKMAN工具使用

为方便jvm生态的软件版本管理&#xff0c;可以使用sdkman工具来安装和管理诸如java、gradle等软件的当前使用版本。尤其是大多数程序员都是在windows平台开发&#xff0c;团队开发通常都需要统一的jvm相关软件的版本。这里给大家演示下windows平台如何安装和使用sdkman来实现这…

安全架构设计

目录 1安全需求分析 2安全架构原则 3安全架构方法 系统架构完整实例_系统架构设计案例-CSDN博客 1安全概述 系统安全架构设计&#xff0c;主要包含&#xff1a;物理安全&#xff0c;网络安全&#xff0c;系统安全&#xff0c;数据安全&#xff0c;应用安全。 完整性(Integ…

内存管理篇-05物理页面的迁移类型migratetype

本节内容依旧是对上节课伙伴系统的补充&#xff0c;主要介绍了新版伙伴系统的页面迁移相关的内容 为什么要引入页面迁移类型&#xff1f;新版本伙伴系统针对老版本的伙伴系统的升级改进。主要优化memory compaction内存碎片整理的过程。 页面迁移实际上就是伙伴系统中free_area…

构建高效的串行任务执行器:SerialExecutor深度解析

本文主要介绍怎么去实现一个支持串行执行任务的SerialExecutor执行器 摘要 在复杂的异步编程中&#xff0c;有时我们需要确保任务以串行的方式执行&#xff0c;以维护任务间的依赖关系或顺序。SerialExecutor 是一个自定义的执行器&#xff0c;它封装了 Java 的 Executor 接口…

leetcode 3 无重复字符的最长子串

leetcode 3 无重复字符的最长子串 正文普通解法双指针 正文 普通解法 重点观察示例 3。本题重点是创建一个动态区间&#xff0c;然后判断位于这个动态区间之外的字符是否被包含在这个动态区间范围内。并且对于 s 长度小于 1 的情况要重点进行讨论。 class Solution:def lengt…

day38.动态规划+MySql数据库复习

844.比较含退格的字符串 给定 s 和 t 两个字符串&#xff0c;当它们分别被输入到空白的文本编辑器后&#xff0c;如果两者相等&#xff0c;返回 true 。# 代表退格字符。 注意&#xff1a;如果对空文本输入退格字符&#xff0c;文本继续为空 思路:定义两个栈&#xff0c;将字符…

后端完成api顺序

contoroller层 Service层 点击getById&#xff0c;如果没有getById函数就先声明一个 然后完成函数体 db层 数据访问对象.数据库方法 //作用是提供对数据库中特定表的操作方法

20. elasticsearch进阶_数据可视化与日志管理

20. 数据可视化 本章概述一. `elasticsearch`实现数据统计1.1 创建用户信息索引1.1.1 控制台创建`aggs_user`索引1.1.2 `aggs_user`索引结构初始化1.1.3 `aggs_user`索引的`EO`对象1.1.4 用户类型枚举1.1.5 数据初始化1.2 内置统计聚合1.2.1 `terms`与`date_histogram``terms``…

C语言基础(十五)

指针的使用&#xff1a; 测试代码1&#xff1a; #include <stdio.h> // 标准的 main 函数声明&#xff0c;包括可选的 envp 参数 int main(int argc, char *argv[], char *envp[]) { // argc 命令行参数的数量&#xff08;包括程序名&#xff09; // argv 指向字…

【html+css 绚丽Loading】000015 九转轮回珠

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享htmlcss 绚丽Loading&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495…

hyper-v ubuntu下连接嵌入式linux板卡

用hyper-v非常的方便&#xff0c;不用装vm也不会那么臃肿&#xff0c;但如何在hyper-v和嵌入式板卡之间进行通讯呢&#xff1f; 1.环境 采用的是100ask-imx6ull板卡&#xff0c;hyper-v装的是ubuntu22系统。 hyper-v根据文章hyper-v上外网已经配置了一个虚拟网卡。 2.物理连…

前端技术(四)—— 最经典Node.JS全套教程

一、node简介 1. 浏览器中的 JavaScript 的组成部分 2. 思考&#xff1a;为什么 JavaScript 可以在浏览器中被执行 3.思考&#xff1a;为什么 JavaScript 可以操作 DOM 和 BOM 4. 浏览器中的 JavaScript 运行环境 5. 思考&#xff1a;JavaScript 能否做后端开发 6. Node.js介绍…

数据仓库建模的步骤-从需求分析到模型优化的全面指南

想象一下,你正站在一座巨大的图书馆前。这座图书馆里存放着你公司所有的数据。但是,书籍杂乱无章,没有分类,没有索引。你如何才能快速找到所需的信息?这就是数据仓库建模要解决的问题。本文将带你深入了解数据仓库建模的主要步骤,让你掌握如何将杂乱的数据转化为有序、高效、易…

React antd Table表格动态合并单元格

注意&#xff1a; ① 采用的是React antDsign 4.x版本 ② 需重新处理data数据 实现效果 代码实现 import React from react; import { Table } from antd;const data [{key: 0,name: 张三,age: 22,sex: 男,},{key: 1,name: 李四,age: 42,sex: 男,},{key: 2,name: 小丽,age: …

yolo V8训练 长条状目标

1、说明 目标数据集合中有很多长条状图片&#xff0c;如果直接Resize 会严重拉伸&#xff0c;因此采用把长条图像裁剪成2段&#xff0c;然后将裁剪后的2段图片拼接在一起。 2、代码 2.1 C 代码 &#xff08;部署&#xff0c;模型推理时C &#xff09; #include <stdio.h…