传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子

图像梯度算子 - Sobel

Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来实现的,具体来说:

  • ddepth:输出图像的深度,通常设置为cv2.CV_64F来避免负数被截断。
  • dxdy 分别指定了水平和垂直方向的导数阶数,比如 dx=1, dy=0 就是对水平方向求一阶导数,用于检测垂直边缘;而 dx=0, dy=1 对应的是对垂直方向求一阶导数,用于检测水平边缘。
  • ksize 是Sobel算子的大小,它决定了滤波器的大小。ksize越大,滤波器覆盖的像素就越多,边缘检测就越模糊。常见的ksize值有1, 3, 5, 7。特别地,ksize=-1时会应用3x3的Scharr滤波器,它比3x3的Sobel滤波器有更好的结果。

在实践中,Sobel算子通过卷积框架应用于图像,分别计算x和y方向上的梯度,然后根据需要可能会结合这两个方向的梯度来得到边缘的完整表示。

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

在这里插入图片描述

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

在这里插入图片描述

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

在这里插入图片描述

灰度化处理
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

在这里插入图片描述
cv2.convertScaleAbs()函数主要作用是将梯度转换成可视化的形式。在进行Sobel边缘检测后,如果直接输出梯度结果,可能会因为数据类型的问题(比如负值)而不能正确显示。这个函数首先对输入的梯度值进行绝对值处理,然后将数据类型转换为无符号8位整型(uint8),这样就可以正常显示为图像了。这个步骤是图像处理中常用的一种方式,用来将处理后的数据转化为图像处理软件或显示设备可以接受的格式。

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')	

在这里插入图片描述

图像梯度-Scharr算子

在这里插入图片描述

不同算子的差异

分别为sobel 、 Scharr、laplacian

#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

在这里插入图片描述

Canny边缘检测

  1.    使用高斯滤波器,以平滑图像,滤除噪声。
    
  2.    计算图像中每个像素点的梯度强度和方向。
    
  3.    应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
    
  4.    应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
    
  5.    通过抑制孤立的弱边缘最终完成边缘检测。
    

cv2.Canny() 函数实现的是Canny边缘检测算法,这是一种非常流行且有效的图像边缘检测方法。该函数需要两个阈值作为参数,用来控制边缘检测的灵敏度。较低的阈值可以捕获更多的边缘(但可能包括一些噪声),而较高的阈值只捕获最显著的边缘。这个算法的步骤包括使用高斯滤波器去除图像噪声、计算图像的梯度强度和方向、应用非极大值抑制(NMS)来消除边缘响应的假阳性以及应用双阈值检测和边缘连接。最终,它输出一个二值图像,显示了检测到的边缘。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

img=cv2.imread("lena.jpg",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

对车辆采用canny算子
img=cv2.imread("car.png",cv2.IMREAD_GRAYSCALE)v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)res = np.hstack((v1,v2))
cv_show(res,'res')

在这里插入图片描述

图像金字塔

在这里插入图片描述

高斯金字塔

高斯金字塔主要用于图像的多尺度表示。在计算机视觉和图像处理中,高斯金字塔通过逐步降低图像的分辨率并应用高斯滤波来生成图像的一系列缩小版本。这个过程包括两个基本操作:降采样和平滑。首先,原始图像被高斯滤波器平滑处理,然后每个方向上每隔一个像素进行采样,从而创建出更小尺寸的图像。

高斯金字塔的应用包括但不限于:

  1. 图像压缩:通过降低图像分辨率的方式减少存储空间需求。
  2. 图像融合:在进行图像拼接或HDR图像合成时,金字塔可以帮助在不同尺度上平滑地融合图像。
  3. 物体检测和识别:使用图像金字塔可以在不同的尺度上检测物体,提高检测的精度和鲁棒性。

通过这种方式,高斯金字塔能够在不同的分辨率层次上处理图像,适用于多种不同的图像处理任务。
在这里插入图片描述

img=cv2.imread("AM.png")
cv_show(img,'img')
print (img.shape)

在这里插入图片描述
上采样

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)

在这里插入图片描述

下采样
down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)

在这里插入图片描述

继续上采样
up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)

在这里插入图片描述

原图与经过图像金字塔后处理的图

在这里插入图片描述

拉普拉斯金字塔

在这里插入图片描述

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/417872.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Robotics: computational motion planning 部分笔记—— week 1 graph-based

grassfire algorithm 四周扩散性;从终点开始按照相邻最小距离格子移动 Dijkstra’s Algorithm 标明从起点开始的所有点的最短距离(从上一节点继承),直到终点 A* Algorithm 带有启发性的,给出距离估计&#xff0c…

小杨的H字矩阵小杨的日字矩阵 c++

小杨的H字矩阵 题目描述 小杨想要构造一个NxN的H字矩阵(N为奇数),具体来说,这个矩阵共有N行,每行N个字符,其中最左列、最右列都是 | (键盘右侧删除键下回车键上,shift\),而中间一行…

国内领先线上运动平台:如何借助AI技术实现业务腾飞与用户体验升级

“ 从智能训练到身体分析,再到辅助判决,AI技术正以惊人的速度渗透进体育和健身领域,为运动员和健身爱好者提供了前所未有的个性化体验。 ” AI,运动的智能伴侣 在巴黎奥运会上,AI技术的运用成为了焦点。它不仅为运动…

Java并发编程实战 03 | Java线程状态

在本文中,我们将深入探讨 Java 线程的六种状态以及它们之间的转换过程。其实线程状态之间的转换就如同生物生命从诞生、成长到最终死亡的过程一样。也是一个完整的生命周期。 首先我们来看看操作系统中线程的生命周期是如何转换的。 操作系统中的线程状态转换 线…

STM32F4按键状态机--单击、双击、长按

STM32F4按键状态机--单击、双击、长按 一、状态机的三要素二、使用状态机原因2.1资源占用方面2.2 执行效率方面:2.3 按键抖动方面: 三、状态机实现3.1 状态机分析3.1 程序实现 百度解析的状态机概念如下 状态机由状态寄存器和组合逻辑电路构成&#xff0…

深度学习 --- VGG16能让某个指定的feature map激活值最大化图片的可视化(JupyterNotebook实战)

VGG16能让某个指定的feature map激活值最大化图片的可视化 在前面的文章中,我用jupyter notebook分别实现了,预训练好的VGG16模型各层filter权重的可视化和给VGG16输入了一张图像,可视化VGG16各层的feature map。深度学习 --- VGG16卷积核的可…

Python 优雅编程:会报恩的代码(五)

文章目录 引言从文本搜索指定单词,不区分单词的大小写使用 str.lower()使用 re 模块 从文本搜索多个单词,依旧不区分单词的大小写使用 str.lower() 和循环使用 re 模块 反复执行 re.compile,re 是否会缓存编译结果?结语 引言 在 …

day47——面向对象特征之继承

一、继承(inhert) 面向对象三大特征:封装、继承、多态 继承:所谓继承,是类与类之间的关系。就是基于一个已有的类,来创建出一个新类的过程叫做继承。主要提高代码的复用性。 1.1 继承的作用 1> 实现…

【一嗨租车-注册安全分析报告-滑动验证加载不正常导致安全隐患】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

UE4_后期处理_后期处理材质及后期处理体积三—遮挡物体描边显示

一、效果: 在很多游戏中为了玩家能看到墙面背后是否有敌人,会给被遮挡的敌人增加描边显示,效果如下: 参考: https://zhuanlan.zhihu.com/p/81310476 https://zhuanlan.zhihu.com/p/358140547 二、所需知识 知识点…

Java笔试面试题AI答之JDBC(3)

文章目录 13. 编写JDBC连Oracle的程序?14. 简述JDBC的主要组件有哪些 ?15. JDBC中如何防止SQL注入攻击?1. 使用预处理语句(PreparedStatement)2. 避免在SQL查询中直接拼接用户输入的数据总结 16. JDBC的脏读是什么?哪…

Spring01——Spring简介、Spring Framework架构、Spring核心概念、IOC入门案例、DI入门案例

为什么要学 spring技术是JavaEE开发必备技能,企业开发技术选型命中率>90%专业角度 简化开发:降低企业开发的复杂度框架整合:高效整合其他技术,提高开发与运行效率 学什么 简化开发 IOCAOP 事务处理 框架整合 MyBatis 怎…

深度学习的基础_多层感知机的手动实现

多层感知机(Multilayer Perceptron,简称MLP)是一种前馈人工神经网络。它包含至少三层节点:一个输入层、一个或多个隐藏层以及一个输出层。除输入节点外,每个节点都是一个带有非线性激活函数的神经元(或称为…

Word快速重复上一步操作的三种高效方法

在日常工作、学习和生活中,我们经常需要执行一系列重复性的操作。这些操作可能简单如复制粘贴、调整图片大小,也可能复杂如编辑文档、处理数据等。为了提高效率,掌握快速重复上一步操作的方法显得尤为重要。本文将介绍三种高效的方法&#xf…

给力!Python配置文件,这一篇就够了!

在开发过程中,我们常常会用到一些固定参数或者是常量。对于这些较为固定且常用到的部分,往往会将其写到一个固定文件中,避免在不同的模块代码中重复出现从而保持核心代码整洁。 这里插播一条粉丝福利,如果你在学习Python或者有计划…

【C题成品论文已出】24数学建模国赛C题成品论文(附参考代码)免费分享

24高教社杯数学建模国赛C题成品论文 一、问题一模型建立与求解 1.1模型建立 (1)决策变量设计 表示一个26158的矩阵,其中26是平旱地梯田和山坡地的总数,15是在这几类土地上可以种植的农作物数量,8则表示从2023到203…

KCP实现原理探析

KCP 是一个轻量级的、高效的、面向 UDP 的传输协议库,专为需要低延迟和高可靠性的实时应用设计。本文针对 KCP 的主要机制和实现与原理进行分析。 1. 术语 术语 全称 说明 TCP Transmission Control Protocol 传输控制协议 RTT Round Trip Time 往返时延 …

【鸿蒙HarmonyOS NEXT】调用后台接口及List组件渲染

【鸿蒙HarmonyOS NEXT】调用后台接口及List组件渲染 一、环境说明二、调用后台接口及List组件渲染三、总结 一、环境说明 DevEco Studio 版本: API版本:以12为主 二、调用后台接口及List组件渲染 后台接口及返回数据分析 JSON数据格式如下&#xf…

Git创建项目

方法一 1.在gitee中新建仓库demo01,并勾选开源许可证,完成后gitee上面的项目demo01里只包含一个LICENSE文件 2.直接在本地电脑中新建项目文件夹demo01,双击进入这个文件夹,右键Git bash here,输入 git clone https:…

跨域问题(CORS)

文章目录 介绍解决一、添加跨域头,允许跨域1.后端配置CORS策略(4种方法)2.配置nginx 二、代理 介绍 跨域资源共享(CORS, Cross-Origin Resource Sharing)是浏览器的一个安全机制,用来防止来自一个域的网页对另一个域下的资源进行…