C++ 设计模式——解释器模式

目录

    • C++ 设计模式——解释器模式
      • 1. 主要组成成分
      • 2. 逐步构建解释器模式
        • 步骤1: 定义抽象表达式
        • 步骤2: 实现终结符表达式
        • 步骤3: 实现非终结符表达式
        • 步骤4: 构建语法树
        • 步骤5: 实现内存管理
        • 步骤6: 创建上下文和客户端
      • 3. 解释器模式 UML 图
        • UML 图解析
      • 4. 解释器模式的优点
      • 5. 解释器模式的缺点
      • 6. 解释器模式适用场景
      • 总结
      • 完整代码

C++ 设计模式——解释器模式

解释器模式是一种特定于语言的模式,用于定义如何评估语言的句法或表达式。它适用于某些重复出现的问题,可以将一个需要解释执行的语言中的句子表示为一个抽象的语法树。这种模式通常被用于开发编程语言解释器或简单的脚本引擎。

引人“解释器”设计模式的定义(实现意图):定义一个语言的文法(语法规则),并建立一个解释器解释该语言中的句子。

1. 主要组成成分

  1. 抽象表达式(Abstract Expression):定义了解释操作的接口。这个接口通常包含一个解释(Interpret)方法,该方法接受一个上下文作为参数。
  2. 终结符表达式(Terminal Expression):实现了抽象表达式接口。这些表达式代表了语言中的终结符,如数字或变量。
  3. 非终结符表达式(Nonterminal Expression):也实现了抽象表达式接口。这些表达式代表了语言中的非终结符,通常包含其他表达式。
  4. 上下文(Context):包含解释器之外的一些全局信息。这可能包括变量的值、当前状态等。
  5. 客户端(Client):构建抽象语法树并调用解释操作。客户端通常会创建或被给予一个表示特定句子的抽象语法树,然后调用解释方法。

2. 逐步构建解释器模式

这个逐步构建的过程展示了解释器模式的核心组件如何协同工作,从定义基本的表达式接口,到实现具体的表达式类,再到构建和解释复杂的表达式树。这种方法使得添加新的表达式类型变得简单,同时保持了整体结构的灵活性和可扩展性。

步骤1: 定义抽象表达式

首先定义一个抽象基类 Expression,它是所有表达式的基础,所有的具体表达式类都必须实现这个函数,以便执行具体的解释任务。

//小表达式(节点)父类
class Expression
{
public:Expression(int num, char sign) :m_dbg_num(num), m_dbg_sign(sign) {} //构造函数virtual ~Expression() {} //做父类时析构函数应该为虚函数public://解析语法树中的当前节点virtual int interpret(map<char, int> var) = 0; //#include <map>,map容器中的键值对用于保存变量名及对应的值public://以下两个成员变量是为程序跟踪调试时观察某些数据方便而引入int m_dbg_num;   //创建该对象时的一个编号,用于记录本对象是第几个创建的char m_dbg_sign; //标记本对象的类型,可能是个字符v代表变量(终结符表达式),也可能是个加减号(非终结符表达式)
};
步骤2: 实现终结符表达式

接着,创建一个或多个终结符表达式类,例如 VarExpression,它们直接与语言的终结符相对应。这些类实现了抽象表达式中定义的 interpret() 方法,返回变量在上下文中的值。

//变量表达式(终结符表达式)
class VarExpression :public Expression
{
public:VarExpression(const char& key, int num, char sign) :Expression(num, sign) //构造函数{m_key = key;}virtual int interpret(map<char, int> var){return var[m_key];  //返回变量名对应的数值}private:char m_key; //变量名,本范例中诸如a、b、c、d都是变量名
};
步骤3: 实现非终结符表达式

创建运算符表达式基类 SymbolExpression 和非终结符表达式类如 AddExpressionSubExpression 代表语言的规则。这些类通常会持有其他 Expression 对象,并在其 interpret() 方法中递归调用这些对象的 interpret() 方法,合并其结果。

//运算符表达式(非终结符表达式)父类
class SymbolExpression :public Expression
{
public:SymbolExpression(Expression* left, Expression* right, int num, char sign) :m_left(left), m_right(right), Expression(num, sign) {} //构造函数Expression* getLeft() { return m_left; }Expression* getRight() { return m_right; }
protected://左右各有一个操作数Expression* m_left;Expression* m_right;
};//加法运算符表达式(非终结符表达式)
class AddExpression :public SymbolExpression
{
public:AddExpression(Expression* left, Expression* right, int num, char sign) :SymbolExpression(left, right, num, sign) {}//构造函数virtual int interpret(map<char, int> var){//分步骤拆开写,方便理解和观察int value1 = m_left->interpret(var); //递归调用左操作数的interpret方法int value2 = m_right->interpret(var); //递归调用右操作数的interpret方法int result = value1 + value2;return result; //返回两个变量相加的结果}
};//减法运算符表达式(非终结符表达式)
class SubExpression :public SymbolExpression
{
public:SubExpression(Expression* left, Expression* right, int num, char sign) :SymbolExpression(left, right, num, sign) {}//构造函数virtual int interpret(map<char, int> var){int value1 = m_left->interpret(var);int value2 = m_right->interpret(var);int result = value1 - value2;return result; //返回两个变量相减的结果}
};
步骤4: 构建语法树

创建一个函数来分析表达式字符串并构建语法树:

//分析—创建语法树(表达式树)
Expression* analyse(string strExp) //strExp:要计算结果的表达式字符串,比如"a-b+c+d"
{stack<Expression*>  expStack;//#include <stack>,这里用到了栈这种顺序容器Expression* left = nullptr;Expression* right = nullptr;int icount = 1;for (size_t i = 0; i < strExp.size(); ++i)//循环遍历表达式字符串中的每个字符{switch (strExp[i]){case '+'://加法运算符表达式(非终结符表达式)left = expStack.top(); //返回栈顶元素(左操作数)++i;right = new VarExpression(strExp[i], icount++, 'v'); //v代表是个变量节点//在栈顶增加元素expStack.push(new AddExpression(left, right, icount++, '+')); //'+'代表是个减法运算符节点break;case '-'://减法运算符表达式(非终结符表达式)left = expStack.top(); //返回栈顶元素++i;right = new VarExpression(strExp[i], icount++, 'v');expStack.push(new SubExpression(left, right, icount++, '-')); //'-'代表是个减法运算符节点break;default://变量表达式(终结符表达式)expStack.push(new VarExpression(strExp[i], icount++, 'v'));break;} //end switch} //end forExpression* expression = expStack.top(); //返回栈顶元素return expression;
}
步骤5: 实现内存管理

添加一个函数来释放表达式树的内存:

void release(Expression* expression)
{//释放表达式树的节点内存SymbolExpression* pSE = dynamic_cast<SymbolExpression*>(expression); //此处代码有优化空间(不使用dynamic_cast),留给读者思考if (pSE){release(pSE->getLeft());release(pSE->getRight());}delete expression;
}
步骤6: 创建上下文和客户端

main 函数中创建上下文(变量映射)并使用解释器:

int main()
{string strExp = "a-b+c+d";	 //将要求值的字符串表达式map<char, int> varmap;//下面是给字符串表达式中所有参与运算的变量一个对应的数值varmap.insert(make_pair('a', 7)); //类似于赋值语句a = 7varmap.insert(make_pair('b', 9)); //类似于赋值语句b = 9varmap.insert(make_pair('c', 3)); //类似于赋值语句c = 3varmap.insert(make_pair('d', 2)); //类似于赋值语句d = 2Expression* expression = analyse(strExp);  //调用analyse函数创建语法树int result = expression->interpret(varmap); //调用interpret接口求解字符串表达式的结果cout << "字符串表达式\"a - b + c + d\"的计算结果为:" << result << endl; //输出字符串表达式结果//释放内存release(expression);return 0;
}

3. 解释器模式 UML 图

解释器模式 UML 图

UML 图解析

解释器模式的 UML 图中包含如下 4 种角色:

  1. AbstractExpression (抽象表达式):声明了一个抽象的解释操作,它是所有终结符表达式和非终结符表达式的公共基类。这里指Expression类。

  2. TerminalExpression (终结符表达式):抽象表达式的子类,实现了语言文法中与终结符表达式相关的解释操作。一个句子中的每个终结符表达式都是该类的一个实例,这些实例可以通过非终结符表达式组成更为复杂的句子。这里指VarExpression类。

  3. NonterminalExpression (非终结符表达式):同样是抽象表达式的子类,实现了语言文法中与非终结符表达式相关的解释操作。考虑到非终结符表达式既可以包含终结符表达式,也可以包含其他非终结符表达式,所以其相关的解释操作一般是通过递归调用实现的。这里指AddExpressionSubExpression

    注意,引入SymbolExpression类的目的是方便AddExpressionSubExpression作为其子类的编写(方便继承),SymbolExpression类本身并不是非终结符表达式,也并不是必须存在的。

  4. Context (环境类/上下文类):用于存储解释器之外的一些全局信息,例如变量名与值的映射关系、存储和访问表达式解释器的状态等。之后这个信息会作为参数传递到所有表达式的解释操作(interpret成员函数)中作为这些解释操作的公共对象来使用。可以根据实际情况决定是否需要使用该类。这里指varmap这个map容器(虽然上述范例并没有将该容器封装到一个类中)。

4. 解释器模式的优点

  1. 易于改变和扩展文法:每个文法规则都对应一个类,可以方便地改变或扩展文法。
  2. 实现文法较为容易:每条文法规则都可以表示为一个类,因此可以直接将规则表示为代码。
  3. 增加新的解释表达式较为方便:如果需要增加新的解释表达式,只需要添加一个新的类即可。

5. 解释器模式的缺点

  1. 对于复杂文法难以维护:当文法规则数目太多时,管理这些类会变得非常困难。
  2. 执行效率较低:解释器模式使用了大量的循环和递归调用,对于复杂的句子可能会导致效率问题。
  3. 可能会引起类膨胀:每个文法规则都需要一个单独的类,可能会导致系统中类的数量急剧增加。

6. 解释器模式适用场景

  1. 简单语法的语言:解释器模式非常适合用于实现一些简单的、可组合的语法规则。例如,计算器程序需要解析和计算数学表达式,可以使用解释器模式来实现。
  2. 领域特定语言(DSL):在某些领域,可能需要定义一个小型的语言来描述特定的任务或行为。例如,SQL查询、正则表达式、配置文件解析等,都可以使用解释器模式来实现相应的解析和执行。
  3. 文本处理:解释器模式可以用于文本处理和编译,例如编译器或解释器中的词法分析和语法分析。它可以将输入的文本转换为抽象语法树,并基于这个树结构执行相应的操作。
  4. 命令解释: 一些应用程序可能需要解析和执行命令行输入或脚本语言。解释器模式可以用来定义这些命令的语法,并提供相应的解释和执行机制。
  5. 规则引擎:在某些业务系统中,可能需要根据一系列规则来执行不同的操作。解释器模式可以用来定义这些规则的语法,并在运行时解析和执行这些规则。
  6. 编程语言的实现:实现一种新的编程语言或脚本语言时,解释器模式可以用于解析和执行语言的语法。许多简单的脚本语言和教学语言都使用解释器模式来实现。

总结

解释器模式提供了一种灵活的方式来解释特定语言的句子。它将每个文法规则封装到单独的类中,使得语言的解释变得模块化和可扩展。然而,这种模式在处理复杂语言时可能会导致类的数量激增,并且可能存在性能问题。因此,解释器模式最适合用于简单语言的解释,或者在需要频繁修改语法规则的场景中。在实际应用中,需要权衡其优点和缺点,并根据具体需求决定是否使用此模式。

完整代码

#include <iostream>
#include <cstring>
#include <map>
#include <stack>
#include <vector>using namespace std;//小表达式(节点)父类
class Expression
{
public:Expression(int num, char sign) :m_dbg_num(num), m_dbg_sign(sign) {} //构造函数virtual ~Expression() {} //做父类时析构函数应该为虚函数public://解析语法树中的当前节点virtual int interpret(map<char, int> var) = 0; //#include <map>,map容器中的键值对用于保存变量名及对应的值public://以下两个成员变量是为程序跟踪调试时观察某些数据方便而引入int m_dbg_num;   //创建该对象时的一个编号,用于记录本对象是第几个创建的char m_dbg_sign; //标记本对象的类型,可能是个字符v代表变量(终结符表达式),也可能是个加减号(非终结符表达式)
};//-----
//变量表达式(终结符表达式)
class VarExpression :public Expression
{
public:VarExpression(const char& key, int num, char sign) :Expression(num, sign) //构造函数{m_key = key;}virtual int interpret(map<char, int> var){return var[m_key];  //返回变量名对应的数值}private:char m_key; //变量名,本范例中诸如a、b、c、d都是变量名
};//------
//运算符表达式(非终结符表达式)父类
class SymbolExpression :public Expression
{
public:SymbolExpression(Expression* left, Expression* right, int num, char sign) :m_left(left), m_right(right), Expression(num, sign) {} //构造函数Expression* getLeft() { return m_left; }Expression* getRight() { return m_right; }
protected://左右各有一个操作数Expression* m_left;Expression* m_right;
};//加法运算符表达式(非终结符表达式)
class AddExpression :public SymbolExpression
{
public:AddExpression(Expression* left, Expression* right, int num, char sign) :SymbolExpression(left, right, num, sign) {}//构造函数virtual int interpret(map<char, int> var){//分步骤拆开写,方便理解和观察int value1 = m_left->interpret(var); //递归调用左操作数的interpret方法int value2 = m_right->interpret(var); //递归调用右操作数的interpret方法int result = value1 + value2;return result; //返回两个变量相加的结果}
};//减法运算符表达式(非终结符表达式)
class SubExpression :public SymbolExpression
{
public:SubExpression(Expression* left, Expression* right, int num, char sign) :SymbolExpression(left, right, num, sign) {}//构造函数virtual int interpret(map<char, int> var){int value1 = m_left->interpret(var);int value2 = m_right->interpret(var);int result = value1 - value2;return result; //返回两个变量相减的结果}
};//分析—创建语法树(表达式树)
Expression* analyse(string strExp) //strExp:要计算结果的表达式字符串,比如"a-b+c+d"
{stack<Expression*>  expStack;//#include <stack>,这里用到了栈这种顺序容器Expression* left = nullptr;Expression* right = nullptr;int icount = 1;for (size_t i = 0; i < strExp.size(); ++i)//循环遍历表达式字符串中的每个字符{switch (strExp[i]){case '+'://加法运算符表达式(非终结符表达式)left = expStack.top(); //返回栈顶元素(左操作数)++i;right = new VarExpression(strExp[i], icount++, 'v'); //v代表是个变量节点//在栈顶增加元素expStack.push(new AddExpression(left, right, icount++, '+')); //'+'代表是个减法运算符节点break;case '-'://减法运算符表达式(非终结符表达式)left = expStack.top(); //返回栈顶元素++i;right = new VarExpression(strExp[i], icount++, 'v');expStack.push(new SubExpression(left, right, icount++, '-')); //'-'代表是个减法运算符节点break;default://变量表达式(终结符表达式)expStack.push(new VarExpression(strExp[i], icount++, 'v'));break;} //end switch} //end forExpression* expression = expStack.top(); //返回栈顶元素return expression;
}void release(Expression* expression)
{//释放表达式树的节点内存SymbolExpression* pSE = dynamic_cast<SymbolExpression*>(expression); //此处代码有优化空间(不使用dynamic_cast),留给读者思考if (pSE){release(pSE->getLeft());release(pSE->getRight());}delete expression;
}int main()
{string strExp = "a-b+c+d";	 //将要求值的字符串表达式map<char, int> varmap;//下面是给字符串表达式中所有参与运算的变量一个对应的数值varmap.insert(make_pair('a', 7)); //类似于赋值语句a = 7varmap.insert(make_pair('b', 9)); //类似于赋值语句b = 9varmap.insert(make_pair('c', 3)); //类似于赋值语句c = 3varmap.insert(make_pair('d', 2)); //类似于赋值语句d = 2Expression* expression = analyse(strExp);  //调用analyse函数创建语法树int result = expression->interpret(varmap); //调用interpret接口求解字符串表达式的结果cout << "字符串表达式\"a - b + c + d\"的计算结果为:" << result << endl; //输出字符串表达式结果//释放内存release(expression);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/417946.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FxFactory 8 for Mac 视觉特效插件包安装

Mac分享吧 文章目录 介绍页面效果一、下载软件二、开始安装1、Install安装2、显示软件页面&#xff0c;表示安装成功3、补丁安装 三、注意事项1、若已安装过其他版本&#xff0c;需要使用软件自带的卸载功能进行软件卸载&#xff0c;再安装此版本 安装完成&#xff01;&#x…

像素间的关系(邻接、连通、区域、边界、距离定义)

文章目录 像素的相邻像素4邻域D邻域8邻域 邻接、连通、区域和边界邻接类型连通区域边界 距离测度欧氏距离城市街区距离&#xff08;city-block distance&#xff09;棋盘距离&#xff08;chessboard distance&#xff09; 参考 像素的相邻像素 4邻域 坐标 ( x , y ) (x,y) (x…

ElasticSearch 集群的索引别名管理

一、索引别名 &#xff08;一&#xff09;添加索引别名 1.给单个索引添加别名 POST http://10.0.0.101:9200/_aliases{"actions":[{"add":{"index":"yedu-linux85","alias":"Linux容器运维"} },{"add&q…

Qt QGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小_图片查看

QtQGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小 头文件&#xff1a; #ifndef TIMGWIDGET_H #define TIMGWIDGET_H#include <QGraphicsItem> #include <QMainWindow> #include <QObject> #include <QWidget>// class TImgWidget : pu…

uniapp钱包支付、与设置密码页面

设置密码页面 <template><view class="paymentCodeBox"><!-- 自定义键盘 -->

【ArcGIS Pro实操第二期】最小成本路径(Least-cost path)原理及实操案例

ArcGIS Pro实操第一期&#xff1a;最小成本路径原理及实操案例 概述&#xff08;Creating the least-cost path&#xff09;1.1 原理介绍1.2 实现步骤1.3 应用案例 2 GIS实操2.1 工具箱简介2.1.1 成本路径&#xff08;Cost path&#xff09;2.1.2 成本距离&#xff08;Cost dis…

微信小程序知识点(二)

1.下拉刷新事件 如果页面需要下拉刷新功能&#xff0c;则在页面对应的json配置文件中&#xff0c;将enablePullDownRefresh配置设置为true&#xff0c;如下 {"usingComponents": {},"enablePullDownRefresh": true } 2.上拉触底事件 在很多时候&#x…

《互联网内容审核实战》:搭建团队到绩效激励,一书在手全搞定!“

&#x1f310;在数字时代的浩瀚海洋中&#xff0c;互联网视频、图片、文字等内容如同潮水般汹涌澎湃&#xff0c;它们以惊人的速度传播&#xff0c;连接着世界的每一个角落。这股信息洪流不仅丰富了我们的视野&#xff0c;也带来了前所未有的挑战——如何在享受信息便利的同时&…

Kaggle竞赛——手写数字识别(Digit Recognizer)

目录 1. 数据集介绍2. 数据分析3. 数据处理与封装3.1 数据集划分3.2 将数据转为tensor张量3.3 数据封装 4. 模型训练4.1 定义功能函数4.1 resnet18模型4.3 CNN模型4.4 FCNN模型 5. 结果分析5.1 混淆矩阵5.2 查看错误分类的样本 6. 加载最佳模型7. 参考文献 本次手写数字识别使用…

Lenze伦茨E82ZBC, E82ZBB E82ZMBRB安装说明手测

Lenze伦茨E82ZBC, E82ZBB E82ZMBRB安装说明手测

景联文科技:提供高质量多模态数据标注,推动智能化转型

随着人工智能技术的快速发展&#xff0c;多模态数据标注成为推动智能系统更深层次理解和应用的关键技术之一。 作为行业领先的多模态数据标注服务商&#xff0c;景联文科技凭借其在技术、流程和人才方面的综合优势&#xff0c;推出了全面的多模态标注解决方案&#xff0c;助力…

828华为云征文|部署电影收藏管理器 Radarr

828华为云征文&#xff5c;部署电影收藏管理器 Radarr 一、Flexus云服务器X实例介绍1.1 云服务器介绍1.2 应用场景1.3 性能模式 二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Radarr3.1 Radarr 介绍3.2 Docker 环境搭建3.3 Radarr 部署3.4 R…

枚举: C++和Python实现鸡兔同笼问题

作者制作不易&#xff0c;关注、点赞、收藏一下吧&#xff01; 目录 1.Python实现 2.C实现 1.Python实现 首先&#xff0c;我们需要输入头和脚的数量: head int(input("请输入头的数量: ")) feet int(input("请输入脚的数量: ")) input() 实现输入…

ChauffeurNet:通过模仿最佳驾驶和合成最坏情况进行学习驾驶

ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst ChauffeurNet&#xff1a;通过模仿最佳驾驶和合成最坏情况进行学习驾驶 https://arxiv.org/abs/1812.03079 Abstract Our goal is to train a policy for autonomous driving via imit…

基于卷积神经网络的磨削平板类零件擦伤检测

基于卷积神经网络的磨削平板类零件擦伤检测 前言正文 前言 还记得读研那会儿刚学习完了卷积神经网络&#xff0c;初步学会了最基础的分类问题&#xff0c;当时也有点python基础&#xff0c;同时对TensorFlow也有点入门了。正好我的课题中有一类缺陷比较难以用传统方法识别判断&…

【LeetCode】01.两数之和

题目要求 做题链接&#xff1a;1.两数之和 解题思路 我们这道题是在nums数组中找到两个两个数使得他们的和为target&#xff0c;最简单的方法就是暴力枚举一遍即可&#xff0c;时间复杂度为O&#xff08;N&#xff09;&#xff0c;空间复杂度为O&#xff08;1&#xff09;。…

【JAVA入门】Day34 - Stream流

【JAVA入门】Day34 - Stream流 文章目录 【JAVA入门】Day34 - Stream流一、Stream 流的作用和使用步骤1.Stream流的创建&#xff0c;数据的添加2. Stream流的中间方法3. Stream流的终结方法 Stream 流有什么作用&#xff1f;我们看一个例子&#xff1a; 【练习】需求&#xff…

C++入门(01)VisualStudio2022社区版HelloWorld

文章目录 1. 下载社区版2. 安装3. 启动4. 创建新项目5. C空项目6. 项目名称和位置7. 创建后&#xff0c;出现“新增功能”&#xff0c;关闭即可8. 解决方案和项目9. 新建源文件10. 编辑第一个C程序11. 运行该程序12. Debug文件夹13. 用好Microsoft Learn 1. 下载社区版 访问&a…

JavaScript 循环分支语句-dowhile循环

do/while 循环是 while 循环的变体。该循环会在检查条件是否为真之前执行一次代码块&#xff0c;然后如果条件为真的话&#xff0c;就会重复这个循环。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta htt…

网页时装购物系统:Spring Boot框架的创新设计

第1章 绪论 1.1背景及意义 随着社会的快速发展&#xff0c;计算机的影响是全面且深入的。人们生活水平的不断提高&#xff0c;日常生活中人们对时装购物系统方面的要求也在不断提高&#xff0c;喜欢购物的人数更是不断增加&#xff0c;使得时装购物系统的开发成为必需而且紧迫的…