GEE数据集:加拿大卫星森林资源调查 (SBFI)-2020 年加拿大森林覆盖、干扰恢复、结构、物种、林分年龄以及 1985-2020 年林分替代干扰的信息

目录

简介

数据集后处理

数据下载链接

矢量属性

代码

代码链接

引用

许可

网址推荐

0代码在线构建地图应用

机器学习


加拿大卫星森林资源调查 (SBFI)

简介

卫星森林资源清查(SBFI)提供了 2020 年加拿大森林覆盖、干扰恢复、结构、物种、林分年龄以及 1985-2020 年林分替代干扰的信息。 SBFI 多边形代表了与战略森林资源清查中划定的林分相似的同质森林状况。 使用多分辨率分割算法对 2020 年大地遥感卫星表面反射 BAP 复合影像(30 米空间分辨率)、火灾年份和采伐年份图层进行了划分,这些图层是使用 C2C 方法从大地遥感卫星上获取的。 最小地图单位为 0.45 公顷(5 像素),用于定义多边形。 整个加拿大的森林生态系统都使用相同的数据、属性和时间表示方法进行测绘,从而形成了加拿大约 6.5 亿公顷森林生态系统的通用植被清查系统。 鉴于加拿大森林面积大且种类繁多,SBFI 的优势在于使用一致的数据源和方法,跨越管辖边界、管理和非管理林区,从而能够一致地生成综合、空间明确的信息输出。 此处包含的数据基于免费开放的卫星数据和信息产品,并遵循既定的交流方法。

数据集后处理

为便于使用,瓦片数据集被合并为一个单一的特征集合。 网格文件保留原样,以便用户了解网格是如何创建的。

数据下载链接

https://opendata.nfis.org/downloads/forest_change/CA_Forest_Satellite_Based_Inventory_2020.zip

矢量属性

GroupFieldDescriptionUnits
IDIDUnique polygon identifier
TILETile identifier
GeometryAREA_HAArea of the polygonha
PERIMETER_MLength of polygon’s boundarym
StratificationJURSDICTIONMost represented province/territory
ECOZONEMost represented terrestrial ecozone as defined by Ecological Stratification Working Group (1996)
ECOPROVINCEMost represented ecoprovince as defined by Ecological Stratification Working Group (1996)
ECOREGIONMost represented ecoregion as defined by Ecological Stratification Working Group (1996)
MANAGEMENTMost represented land status from the forest management classification from Stinson et al_ (2019)
Land coverLC_WATERArea covered by water% of polygon area
LC_SNOW_ICEArea covered by snow/ice% of polygon area
LC_ROCK_RUBBLEArea covered by rock/rubble% of polygon area
LC_EXPOSED_BARRENArea covered by exposed/barren land% of polygon area
LC_BRYOIDSArea covered by bryoids% of polygon area
LC_SHRUBSArea covered by shrubs% of polygon area
LC_WETLANDArea covered by wetland% of polygon area
LC_WETLAND-TREEDArea covered by wetland-treed% of polygon area
LC_HERBSArea covered by herbs% of polygon area
LC_CONIFEROUSArea covered by coniferous% of polygon area
LC_BROADLEAFArea covered by broadleaf% of polygon area
LC_MIXEDWOODArea covered by mixedwood% of polygon area
LC_TREEDArea covered by treed vegetation derived from combining the land cover classes% of polygon area
LC_FAO_FORESTArea covered by forest consistent with FAO definitions (Wulder et al_ 2020)% of polygon area
LC_WETLAND_VEGETATIONArea covered by wetlands derived from combining the land cover classes% of polygon area
DisturbancesDISTURB_FIRE_PERCArea impacted by fire disturbances% of polygon area
DISTURB_FIRE_YEARModal year of fire disturbancesyears
DISTURB_FIRE_MAGNITUDE_MINMinimum value of fire magnitudedNBR
DISTURB_FIRE_MAGNITUDE_MAXMaximum value of fire magnitudedNBR
DISTURB_FIRE_MAGNITUDE_AVGAverage value of fire magnitudedNBR
DISTURB_FIRE_MAGNITUDE_SDStandard deviation of fire magnitudedNBR
DISTURB_FIRE_MAGNITUDE_MEDMedian value of fire magnitudedNBR
DISTURB_HARVEST_PERCArea impacted by harvesting disturbances% of polygon area
DISTURB_HARVEST_YEARModal year of harvesting disturbancesyears
RecoveryRECOVERY_FIRE_MINMinimum value of spectral recovery for fire disturbances% of pre-disturbance
RECOVERY_FIRE_MAXMaximum value of spectral recovery for fire disturbances% of pre-disturbance
RECOVERY_FIRE_AVGAverage value of spectral recovery for fire disturbances% of pre-disturbance
RECOVERY_FIRE_SDStandard deviation of spectral recovery for fire disturbances% of pre-disturbance
RECOVERY_FIRE_MEDMedian value of spectral recovery for fire disturbances% of pre-disturbance
RECOVERY_HARVEST_MINMinimum value of spectral recovery for harvesting disturbances% of pre-disturbance
RECOVERY_HARVEST_MAXMaximum value of spectral recovery for harvesting disturbances% of pre-disturbance
RECOVERY_HARVEST_AVGAverage value of spectral recovery for harvesting disturbances% of pre-disturbance
RECOVERY_HARVEST_SDStandard deviation of spectral recovery for harvesting disturbances% of pre-disturbance
RECOVERY_HARVEST_MEDMedian value of spectral recovery for harvesting disturbances% of pre-disturbance
AgeAGE_MINMinimum forest ageyears
AGE_MAXMaximum forest ageyears
AGE_AVGAverage forest ageyears
AGE_SDStandard deviation of forest ageyears
AGE_MEDMedian forest ageyears
AGE_0_10, AGE_10_20, AGE_20_30, AGE_30_40, AGE_40_50, AGE_50_60, AGE_60_70, AGE_70_80, AGE_80_90, AGE_90_100, AGE_100_110, AGE_110_120, AGE_120_130, AGE_130_140, AGE_140_150, AGE_GT_150Ten-year age class frequency distribution% of treed area in polygon
Forest structureSTRUCTURE_CANOPY_HEIGHT_MINMinimum canopy heightm
STRUCTURE_CANOPY_HEIGHT_MAXMaximum canopy heightm
STRUCTURE_CANOPY_HEIGHT_AVGAverage canopy heightm
STRUCTURE_CANOPY_HEIGHT_SDStandard deviation of canopy heightm
STRUCTURE_CANOPY_HEIGHT_MEDMedian canopy heightm
STRUCTURE_CANOPY_COVER_MINMinimum canopy cover%
STRUCTURE_CANOPY_COVER_MAXMaximum canopy cover%
STRUCTURE_CANOPY_COVER_AVGAverage canopy cover%
STRUCTURE_CANOPY_COVER_SDStandard deviation of canopy cover%
STRUCTURE_CANOPY_COVER_MEDMedian canopy cover%
STRUCTURE_LOREYS_HEIGHT_MINMinimum Lorey’s heightm
STRUCTURE_LOREYS_HEIGHT_MAXMaximum Lorey’s heightm
STRUCTURE_LOREYS_HEIGHT_AVGAverage Lorey’s heightm
STRUCTURE_LOREYS_HEIGHT_SDStandard deviation of Lorey’s heightm
STRUCTURE_LOREYS_HEIGHT_MEDMedian Lorey’s heightm
STRUCTURE_BASAL_AREA_MINMinimum basal aream2 ha−1
STRUCTURE_BASAL_AREA_MAXMaximum basal aream2 ha−1
STRUCTURE_BASAL_AREA_AVGAverage basal aream2 ha−1
STRUCTURE_BASAL_AREA_SDStandard deviation of basal aream2 ha−1
STRUCTURE_BASAL_AREA_MEDMedian basal aream2 ha−1
STRUCTURE_BASAL_AREA_TOTALTotal basal area in polygonm2
STRUCTURE_AGB_MINMinimum aboveground biomasst ha−1
STRUCTURE_AGB_MAXMaximum aboveground biomasst ha−1
STRUCTURE_AGB_AVGAverage aboveground biomasst ha−1
STRUCTURE_AGB_SDStandard deviation of aboveground biomasst ha−1
STRUCTURE_AGB_MEDMedian aboveground biomasst ha−1
STRUCTURE_AGB_TOTALTotal aboveground biomass in polygont
STRUCTURE_VOLUME_MINMinimum gross stem volumem3 ha−1
STRUCTURE_VOLUME_MAXMaximum gross stem volumem3 ha−1
STRUCTURE_VOLUME_AVGAverage gross stem volumem3 ha−1
STRUCTURE_VOLUME_SDStandard deviation of gross stem volumem3 ha−1
STRUCTURE_VOLUME_MEDMedian gross stem volumem3 ha−1
STRUCTURE_VOLUME_TOTALTotal gross stem volume in polygonm3
Tree speciesSPECIES_NUMBER
SPECIES_1Name of the 1st most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_2Name of the 2nd most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_3Name of the 3rd most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_4Name of the 4th most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_5Name of the 5th most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_1_PERCArea covered by the 1st most common leading tree species% of treed area in polygon
SPECIES_2_PERCArea covered by the 2nd most common leading tree species% of treed area in polygon
SPECIES_3_PERCArea covered by the 3rd most common leading tree species% of treed area in polygon
SPECIES_5_PERCArea covered by the 5th most common leading tree species% of treed area in polygon
SPECIES_CONIFEROUS_PERCArea covered by coniferous tree species% of treed area in polygon
SPECIES_CML1Name of the 1st most common tree species based on the class membership likelihood values
SPECIES_CML2Name of the 2nd most common tree species based on the class membership likelihood values
SPECIES_CML3Name of the 3rd most common tree species based on the class membership likelihood values
SPECIES_CML4Name of the 4th most common tree species based on the class membership likelihood values
SPECIES_CML5Name of the 5th most common tree species based on the class membership likelihood values
SPECIES_CML1_PERCDistribution of the class membership likelihood values of the 1st most common tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML2_PERCDistribution of the class membership likelihood values of the 2nd most common tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML3_PERCDistribution of the class membership likelihood values of the 3rd most common tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML4_PERCDistribution of the class membership likelihood values of the 4th most common tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML5_PERCDistribution of the class membership likelihood values of the 5th most common tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML_CONIFEROUS_PERCProportion of class membership likelihood values of coniferous tree species% of class membership likelihood from treed pixels in polygon
SPECIES_CML_ASSEMBLAGESName of the tree species conforming an assemblage
SPECIES_CML_ASSEMBLAGES_PERCProportion of class membership likelihood values conforming the assemblage% of class membership likelihood from treed pixels in polygon
SymbologySYMB_LAND_BASE_LEVELLand base level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_LAND_COVER_LEVELLand cover level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_VEGETATION_LEVELVegetation level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_DISTURBANCESimplified coding for disturbance type and year
SYMB_RECOVERYSimplified coding for spectral recovery
SYMB_AGESimplified coding for forest age

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ABoVE_ASCENDS_XCO2_2050",cloud_hosted=True,bounding_box=(-165.68, 34.59, -98.1, 71.28),temporal=("2017-07-20", "2017-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/CA-SBFI

引用

Wulder, Michael A., Txomin Hermosilla, Joanne C. White, Christopher W. Bater, Geordie Hobart, and Spencer C. Bronson. "Development and
implementation of a stand-level satellite-based forest inventory for Canada." Forestry: An International Journal of Forest Research (2024): cpad065.

Wulder, M.A., Hermosilla, T., White, J.C., Bater, C.W., Hobart, G., Bronson, S.C., 2024. Development and implementation of a stand-level
satellite-based forest inventory for Canada. Forestry: An International Journal of Forest Research. https://doi.org/10.1093/forestry/cpad065

许可

本作品采用加拿大开放式政府许可协议(Open Government Licence - Canada)进行许可,并向公众免费开放。 创作者:Wulder et al: Wulder et al. 2024 在 GEE 中策划: : Samapriya Roy 主要作品: 大地遥感卫星、土地覆盖、变化探测、森林结构、生物量;NFI 在 GEE 中的最新更新时间: 2024-08-29 

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/418841.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海外云手机是否适合运营TikTok?

随着科技的迅猛发展,海外云手机逐渐成为改变工作模式的重要工具。这种基于云端技术的虚拟手机,不仅提供了更加便捷、安全的使用体验,还在电商引流和海外社媒管理等领域展示了其巨大潜力。那么,海外云手机究竟能否有效用于运营TikT…

828华为云征文 | Flexus X 实例服务器网络性能深度评测

引言 随着互联网应用的快速发展,网络带宽和性能对云服务器的表现至关重要。在不同的云服务平台上,即便配置相同的带宽,实际的网络表现也可能有所差异。因此,了解并测试服务器的网络性能变得尤为重要。本文将以华为云X实例服务器为…

Open-Sora代码详细解读(1):解读DiT结构

Diffusion Models专栏文章汇总:入门与实战 前言:目前开源的DiT视频生成模型不是很多,Open-Sora是开发者生态最好的一个,涵盖了DiT、时空DiT、3D VAE、Rectified Flow、因果卷积等Diffusion视频生成的经典知识点。本篇博客从Open-S…

【MySQL】MySQL基础

目录 什么是数据库主流数据库基本使用MySQL的安装连接服务器服务器、数据库、表关系使用案例数据逻辑存储 MySQL的架构SQL分类什么是存储引擎 什么是数据库 mysql它是数据库服务的客户端mysqld它是数据库服务的服务器端mysql本质:基于C(mysql&#xff09…

linux系统中,计算两个文件的相对路径

realpath --relative-to/home/itheima/smartnic/smartinc/blocks/ruby/seanet_diamond/tb/parser/test_parser_top /home/itheima/smartnic/smartinc/corundum/fpga/lib/eth/lib/axis/rtl/axis_fifo.v 检验方式就是直接在当前路径下,把输出的路径复制一份&#xff0…

Nginx跨域运行案例:云台控制http请求,通过 http server 代理转发功能,实现跨域运行。(基于大华摄像头WEB无插件开发包)

文章目录 引言I 跨域运行案例开发资源测试/生产环境,Nginx代理转发,实现跨域运行本机开发运行II nginx的location指令Nginx配置中, 获取自定义请求header头Nginx 配置中,获取URL参数引言 背景:全景监控 需求:感知站点由于云台相关操作为 http 请求,http 请求受浏览器…

Redis-主从集群

主从架构 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 全量同步 主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给sla…

34465A-61/2 数字万用表(六位半)

34465A-61/2 数字万用表(六位半) 文章目录 34465A-61/2 数字万用表(六位半)前言一、测DC/AC电压二、测DC/AC电流四、测电阻五、测电容六、测二极管七、保存截图流程前言 1、6位半数字万用表通常具有200,000个计数器,可以显示最大为199999的数值。相比普通数字万用表,6位半…

注册安全分析报告:熊猫频道

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

【笔记】Java | 三目运算符和Math函数的比较

实际效果 比较两数并赋值&#xff0c;如下两种方法的耗时不会有差异。 result Math.min(result, subLen);result result < subLen ? result : subLen; 源码解析 因为源码Math.min的源码本质就算三目运算符的比较&#xff0c;所以执行结果是一样的。 三目运算符简介 概…

怎么强制撤销excel工作表保护?

经常不是用的Excel文件设置了工作表保护&#xff0c;偶尔打开文件的时候想要编辑文件&#xff0c;但是发现忘记了密码&#xff0c;那么这种情况&#xff0c;我们怎么强制撤销excel工作表保护&#xff1f;今天分享两种解决方法。 方法一、 将excel文件转换为其他文件格式&…

新品上市丨科学级新款制冷相机sM4040A/sM4040B

sM4040B科学级显微制冷相机 特性 sM4040B搭载了 GSENSE4040BSI 3.2 英寸图像传感器&#xff0c;针对传感器固有的热噪声&#xff0c;专门设计了高效制冷模块&#xff0c;使得相机传感器的工作温度比环境温度低达 35-40 度。针对制冷相机常见的低温结雾现象设计了防结雾机制&a…

二百五十九、Java——采集Kafka数据,解析成一条条数据,写入另一Kafka中(一般JSON)

一、目的 由于部分数据类型频率为1s&#xff0c;从而数据规模特别大&#xff0c;因此完整的JSON放在Hive中解析起来&#xff0c;尤其是在单机环境下&#xff0c;效率特别慢&#xff0c;无法满足业务需求。 而Flume的拦截器并不能很好的转换数据&#xff0c;因为只能采用Java方…

鸿蒙自动化发布测试版本app

创建API客户端 API客户端是AppGallery Connect用于管理用户访问AppGallery Connect API的身份凭据&#xff0c;您可以给不同角色创建不同的API客户端&#xff0c;使不同角色可以访问对应权限的AppGallery Connect API。在访问某个API前&#xff0c;必须创建有权访问该API的API…

UE5.3_跟一个插件—Socket.IO Client

网上看到这个插件,挺好! 项目目前也没有忙到不可开交,索性跟着测一下吧: 商城可见,售价72.61人民币! 但是,git上有仓库哦,免费!! 跟着链接先准备起来: Documentation: GitHub - getnamo/SocketIOClient-Unreal: Socket.IO client plugin for the Unreal Engin…

数据仓库理论知识

1、数据仓库的概念 数据仓库&#xff08;英文&#xff1a;Date Warehouse&#xff0c;简称数仓、DW&#xff09;&#xff0c;是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境&#xff0c;其数据来源于不同的外部系统&#…

【H2O2|全栈】Markdown | Md 笔记到底如何使用?【前端 · HTML前置知识】

Markdown的一些杂谈 目录 Markdown的一些杂谈 前言 准备工作 认识.Md文件 为什么使用Md&#xff1f; 怎么使用Md&#xff1f; ​编辑 怎么看别人给我的Md文件&#xff1f; Md文件命令 切换模式 粗体、倾斜、下划线、删除线和荧光标记 分级标题 水平线 引用 无序…

缓存类型以及读写策略

缓存&#xff08;Cache&#xff09;是一种高效的数据存储技术&#xff0c;旨在提高数据访问速度。 它将频繁访问或最近使用的数据临时存储在更快速但较小的存储介质&#xff08;如内存&#xff09;中&#xff0c;以减少从较慢的存储设备&#xff08;如硬盘或远程服务器&#x…

4G模块、WIFI模块、NBIOT模块通过AT指令连接华为云物联网服务器(MQTT协议)

MQTT协议概述 MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级的消息传输协议&#xff0c;它被设计用来提供一对多的消息分发和应用之间的通讯&#xff0c;尤其适用于远程位置的设备和高延迟或低带宽的网络。MQTT协议基于客户端-服务器架构&…

iOS——方法交换Method Swizzing

什么是方法交换 Method Swizzing是发生在运行时的&#xff0c;主要用于在运行时将两个Method进行交换&#xff0c;我们可以将Method Swizzling代码写到任何地方&#xff0c;但是只有在这段Method Swilzzling代码执行完毕之后互换才起作用。 利用Objective-C Runtimee的动态绑定…