004: VTK读入数据---vtkImageData详细说明

VTK医学图像处理---vtkImageData类

目录

VTK医学图像处理---vtkImageData类

简介:

1 Mricro软件的安装和使用

(1) Mricro安装

(2) Mricro转换DICOM为裸数据 

2 从硬盘读取数据到vtkImageData

3 vtkImageData转RGB或RGBA格式

4 练习

总结


简介:

        对于医学图像来说,vtkImageData是使用频率非常高的类,因为医学图像通常为较为规则的矩形或容积类型(三维),而vtkImageData类主要就是用于存储此类数据的,vtk中相关算法(比如阈值、缩放等)的输入和输出也是vtkImageData类,熟练掌握vtkImageData类非常重要。

        vtkDICOMImageReader类读取文件夹中的DICOM文件后,DICOM数据也存储在vtkImageData类中,本篇博文将跳过vtkDICOMImageReader类,直接从硬盘读取数据到vtkImageData类中,以增强大家对vtkImageData类的熟悉。

        由于DICOM格式非常负责,有专门的开源库对DICOM文件进行解析,比如DCMTK(DCMTK - dicom.offis.de),我们不打算详细介绍DICOM标准,因此我们将借助一个免费的软件Mricro(建议大家学会使用给软件,不管是开发还是做科研都非常有用)来将DICOM文件转换为原始数据,采用C语言从硬盘读取原始数据到vtkImageData类中。

        本博文主要包括为 Mricro的安装和使用,从硬盘读取数据到vtkImageData类,vtkImageData类的详细介绍。

1 Mricro软件的安装和使用

下载地址:MRIcro software guide (sc.edu)   

打开网页后,点击下图中红色方框中的链接开始下载。

(1) Mricro安装

下载后,解压会看到下面的图标,双击安装,提出是否安装,选择是,一路默认安装,详细步骤如下图:

(2) Mricro转换DICOM为裸数据 

 在开始栏中搜索Mricro,或从所有应用程序里面找到Mricro启动,启动后的界面为:

DICOM数据下载地址:【免费】VTK-医学图像处理博文中需要的DICOM测试数据资源-CSDN文库

下载DICOM数据解压,在Mricro软件的菜单项中选择 Import--Convert foreign to Analyze,跳出选择对话框。

在Number of Files中要输入待转换的DICOM文件张数, 例如这里我们转换10张,就在该输入框内填写10,记得勾选 Open sequential files:ignore filename选项,然后点击  Select。

在Conversion Options框中,继续点击 OK

这里有时候会跳出一个或两个提示框,不用管它,点击OK继续

到 Select 对话框后,随便选中一张待转换的DICOM文件,然后再文件名中输入要保存为裸数据的名称,点击  打开。

 

单击  打开后,会跳出导出保存框,在保存框中输入要保存的名称,点击  保存按钮进行保存。

 

打开DicomFiles所在文件夹,会发现里面多了两个文件:test.hdr和  test.img

其中 test.hdr文件中保存的数据的长宽高,空间位置等信息

test.img文件中就是纯粹的裸数据,接下来我们将读取test.img中的数据到vtkImageData中。

双击test.hdr,用Mricro软件打开它,在软件的左侧,可以看到test.img中的数据长为512,宽为512,一共有10张图像,数据类型为short。

2 从硬盘读取数据到vtkImageData

 老规矩,先看下代码,也可以拷贝到自己的项目中,运行下:

#define _CRT_SECURE_NO_WARNINGS#include "vtkImageMapToWindowLevelColors.h"
#include "vtkImageActor.h"
#include "vtkImageMapper3D.h"
#include "vtkImageData.h"
#include "vtkNew.h"
#include "vtkDICOMImageReader.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkRenderer.h"
#include "vtkCamera.h"
int ImageSlice = 0;
void main()
{vtkNew<vtkImageData> imageData;imageData->SetDimensions(512, 512, 10);imageData->SetSpacing(.49, .49, .7);imageData->SetOrigin(0.0, 0.0, 0.0);imageData->AllocateScalars(VTK_SHORT, 1);void *ptr = imageData->GetScalarPointer();size_t bSize = 512 * 512 * 10;FILE* pFile = fopen("D:\\DicomFiles\\test.img","rb+");if (NULL == pFile)return;fread(ptr, sizeof(short), bSize, pFile);fclose(pFile);int* ext = imageData->GetExtent();// map the input image through a lookup table and window / level itvtkNew<vtkImageMapToWindowLevelColors> windowLevel;windowLevel->SetWindow(1000);windowLevel->SetLevel(800);windowLevel->SetInputData(imageData);//vtkImageActor: draw an image in a rendered 3D scenevtkNew<vtkImageActor> imageActor;imageActor->SetDisplayExtent(ext[0], ext[1], ext[2], ext[3], ImageSlice, ImageSlice);imageActor->GetMapper()->SetInputConnection(windowLevel->GetOutputPort());// The renderer generates the image which is then displayed on the render window.vtkNew<vtkRenderer> renderer;renderer->AddActor(imageActor);renderer->SetBackground(.2,.2,.2);vtkCamera *cam = renderer->GetActiveCamera();if (cam){// 获取物体在三维空间中的原点,XYZ范围和中心//vtkImageData* idata = reader->GetOutput();vtkImageData* idata = imageData;double* origins = idata->GetOrigin(); // 三维坐标中的起点double* bounds = idata->GetBounds();  // 包围盒的xyz范围double* center = idata->GetCenter();  // 中心cam->SetFocalPoint(center);cam->SetPosition(center[0], center[1], center[2] - bounds[5]); // -1 if medical ?cam->SetViewUp(0, 1, 0);cam->SetClippingRange(0.1,1000);renderer->ResetCamera();}// The render window is the actual GUI window that appears on the computer screenvtkNew<vtkRenderWindow> renderWindow;renderWindow->SetSize(512, 512);renderWindow->AddRenderer(renderer);renderWindow->SetWindowName("Dicom Image");// The render window interactor captures mouse events// and will perform appropriate camera or actor manipulation// depending on the nature of the events.vtkNew<vtkRenderWindowInteractor> interactor;interactor->SetRenderWindow(renderWindow);// This starts the event loop and as a side effect causes an initial render.renderWindow->Render();interactor->Start();
}

主要修改的代码如下:

    vtkNew<vtkImageData> imageData;imageData->SetDimensions(512, 512, 10);imageData->SetSpacing(.49, .49, .7);imageData->SetOrigin(0.0, 0.0, 0.0);imageData->AllocateScalars(VTK_SHORT, 1);void *ptr = imageData->GetScalarPointer();size_t bSize = 512 * 512 * 10;FILE* pFile = fopen("D:\\DicomFiles\\test.img","rb+");if (NULL == pFile)return;fread(ptr, sizeof(short), bSize, pFile);fclose(pFile);

 SetDimensions 函数主要用来设置图像的长宽高信息

SetSpacing 是像素间距,图像的(512 - 1)* 0.49 就是图像宽的实际尺寸;

SetOrigin  是图像在世界坐标中的位置;

AllocateScalars有两个参数,第一个参数指定数据类型(16bit short);第二个参数1是 一个像素是有一个元素组成(对于BMP位图来说,一个像素是有RGB/RGBA组成的);

AllocateScalars 同时还分配内存空间;

GetScalarPointer函数可以获取分配内存空间的地址;有了地址,有了数据的大小,就可以直接从硬盘读取裸数据了。读取的代码用C语言来写的,这里就不解释了。

运行结果如下: 

3 vtkImageData转RGB或RGBA格式

接下来我们增加了个一个Convert2RGB函数,用户将vtkImageData中的数据转换为RGB格式的数据,并保存的硬盘,然后用Mricro打开查看。

完整源代码如下:

#define _CRT_SECURE_NO_WARNINGS#include "vtkImageMapToWindowLevelColors.h"
#include "vtkImageActor.h"
#include "vtkImageMapper3D.h"
#include "vtkImageData.h"
#include "vtkNew.h"
#include "vtkDICOMImageReader.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkRenderer.h"
#include "vtkCamera.h"
#include "vtkWindowLevelLookupTable.h"
int ImageSlice = 0;void Convert2RGB(vtkImageData* pData);void main()
{vtkNew<vtkImageData> imageData;imageData->SetDimensions(512, 512, 10);imageData->SetSpacing(.49, .49, .7);imageData->SetOrigin(0.0, 0.0, 0.0);imageData->AllocateScalars(VTK_SHORT, 1);void *ptr = imageData->GetScalarPointer();size_t bSize = 512 * 512 * 10;FILE* pFile = fopen("D:\\DicomFiles\\test.img","rb+");if (NULL == pFile)return;fread(ptr, sizeof(short), bSize, pFile);fclose(pFile);Convert2RGB(imageData);int* ext = imageData->GetExtent();// map the input image through a lookup table and window / level itvtkNew<vtkImageMapToWindowLevelColors> windowLevel;windowLevel->SetWindow(1000);windowLevel->SetLevel(800);windowLevel->SetInputData(imageData);//vtkImageActor: draw an image in a rendered 3D scenevtkNew<vtkImageActor> imageActor;imageActor->SetDisplayExtent(ext[0], ext[1], ext[2], ext[3], ImageSlice, ImageSlice);imageActor->GetMapper()->SetInputConnection(windowLevel->GetOutputPort());// The renderer generates the image which is then displayed on the render window.vtkNew<vtkRenderer> renderer;renderer->AddActor(imageActor);renderer->SetBackground(.2,.2,.2);vtkCamera *cam = renderer->GetActiveCamera();if (cam){// 获取物体在三维空间中的原点,XYZ范围和中心//vtkImageData* idata = reader->GetOutput();vtkImageData* idata = imageData;double* origins = idata->GetOrigin(); // 三维坐标中的起点double* bounds = idata->GetBounds();  // 包围盒的xyz范围double* center = idata->GetCenter();  // 中心cam->SetFocalPoint(center);cam->SetPosition(center[0], center[1], center[2] - bounds[5]); // -1 if medical ?cam->SetViewUp(0, 1, 0);cam->SetClippingRange(0.1,1000);renderer->ResetCamera();}// The render window is the actual GUI window that appears on the computer screenvtkNew<vtkRenderWindow> renderWindow;renderWindow->SetSize(512, 512);renderWindow->AddRenderer(renderer);renderWindow->SetWindowName("Dicom Image");// The render window interactor captures mouse events// and will perform appropriate camera or actor manipulation// depending on the nature of the events.vtkNew<vtkRenderWindowInteractor> interactor;interactor->SetRenderWindow(renderWindow);// This starts the event loop and as a side effect causes an initial render.renderWindow->Render();interactor->Start();
}void Convert2RGB(vtkImageData* pData)
{void *ptr = pData->GetScalarPointer();vtkNew<vtkWindowLevelLookupTable> table;table->SetWindow(1000);table->SetLevel(800);table->Build();table->BuildSpecialColors();long iCount = 512 * 512;void *rgbPtr = malloc(iCount * 3);unsigned char *desPtr = (unsigned char *)rgbPtr;table->MapScalarsThroughTable2(ptr, desPtr, VTK_UNSIGNED_SHORT, iCount, VTK_LUMINANCE, VTK_RGB);FILE* pFile = fopen("color2.img", "wb+");if (!pFile)return;fwrite(rgbPtr, 1, iCount * 3, pFile);fclose(pFile);free(rgbPtr);}

打开源代码所在文件夹,会发现多了一个color2.img,打开Mricro软件,将 color2.img拖到Mricro软件中,发现打开后是乱码,这是由于Mricro软件左侧的参数信息不正确。

将左侧X Y Z分别填入512  512 1

将Data,选中 24-bit rgb,

然后点击菜单中的Header,Save header;

保存完成后,双击 color2.hdr,打开,显示结果如下:

在这里例子中,我们只保存了一张RGB,而图像是有10张的,请自己动手,把10张图像全部保存成为RGB数据,练习一下。 

4 练习

(1)用vtkImageData读取一张BMP图像,并显示;

(2)将相机的位置这是在现在位置的反方向,对比下显示结果;

(3)将vtkImageData中的数据重新保存一份,用Mricro软件打开查看是否正确;

总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/422214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

堆的概念与实现

目录 一、堆的介绍 1.堆的概念 2.堆的性质&#xff1a; 3.堆的结构 二、堆的实现 1.堆的定义 2.接口函数 三、堆的实现 1.堆的初始化 2.堆的销毁 3.获取堆顶数据 4.判断堆是否为空 5. 堆的插入 向上调整算法&#xff08;重点&#xff09; 向下调整算法(重点) 6.删除…

【unity小技巧】unity 把window项目打包成只有一个exe的运行文件

文章目录 前言一、unity游戏打包window二、下载安装WinRAR压缩包打包工具三、添加压缩文件1、选择全部6个&#xff08;5个也可以&#xff0c;这个64.exe文件可以省略&#xff09;文件&#xff0c;右键点击添加到压缩文件2、修改压缩文件名&#xff0c;后缀改成.exe3、选择高级–…

【MySQL】索引和事物

索引和事物 索引索引是什么索引的基本操作索引部分原理数据结构讨论B-树B树 MySQL的索引实现 事物事物的概念事物的使用事物的四大特性(ACID)事物并发问题事物的隔离级别 索引 索引是什么 在正常情况下, 数据库去搜索数据, 都是通过一行行的遍历, 然后找到符合要求的行并且筛…

sql中索引查看是否生效

在pg数据库中有多种索引存在&#xff0c;在一般情况下我们取使用普通索引 以下是一些常见导致索引未命中的原因和优化策略 1.如果查询中的条件与索引字段的顺序不匹配&#xff0c;或者索引字段没有完全包含在查询条件中&#xff0c;索引可能不会被使用。 2.在查询中使用函数…

golang学习笔记05——golang协程池,怎么实现协程池?

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang实战大纲golang优秀开发常用开源库汇总golang学习笔记01——基本数据类型golang学习笔记02——gin框架及基本原理golang学习笔记03——gin框架的核心数据结构golang学习笔记04——如何真正写好Golang代码&#xff1f…

从卫星和飞机等不同传感器方面由QGIS 遥感分析

在地理信息科学 (GIS) 中,遥感是指从远处获取有关地球表面特征信息的行为。遥感数据是从许多不同的平台获取而来,包括卫星、飞机和具有许多不同传感器的固定仪器,包括光谱图像(相机)和激光雷达。最常见的遥感数据形式是卫星和航空图像。 为了充分实现这些照片的价值,需要…

C++类型转换,特殊类设计,IO流

1.类型转换 什么是类型转换&#xff1f;我们知道有些数字类型可以相互转换&#xff0c;如double类型可以转换为int类型&#xff0c;这样的转换会发生切割将double类型的小数部分切割掉丢失精度&#xff1b;还有在前面的多态那块有一个虚函数指针表&#xff0c;这个虚函数指针表…

ZYNQ 入门笔记(二):动态时钟

文章目录 1 概述1.1 DRP1.2 AXI4-Lite 2 示例2.1 单时钟输出2.2 多时钟输出 3 参考文档 1 概述 Clocking Wizard 可通过配置内部寄存器动态调整输出频率&#xff0c;配置接口可选 DRP 或 AXI4-Lite&#xff0c;其中 AXI4-Lite 实际上是对 DRP 接口的封装 1.1 DRP 通过 DRP 接…

用RNN(循环神经网络)预测股票价格

RNN&#xff08;循环神经网络&#xff09;是一种特殊类型的神经网络&#xff0c;它能够处理序列数据&#xff0c;并且具有记忆先前信息的能力。这种网络结构特别适合于处理时间序列数据、文本、语音等具有时间依赖性的问题。RNN的核心特点是它可以捕捉时间序列中的长期依赖关系…

C2免杀--手工shellcode编译,shellcode免杀思路

前言 欢迎来到我的博客 个人主页:北岭敲键盘的荒漠猫-CSDN博客 本文主要整理C2免杀中 shellcode代码免杀的相关部分 shellcode概念 我们也不啰嗦&#xff0c;我直接直观的描述一下他。 他就是一串机器能运行的代码&#xff0c;但是他不是正统的python&#xff0c;c&#xff…

中伟视界:煤矿皮带运输机异物监测AI算法能检测哪几种异物,通过什么方式来判断异物?

在矿山运输系统中&#xff0c;运输皮带上可能出现各种异物&#xff0c;如大煤块、锚杆、钻杆、煤矸石、木板、铁棍等。这些异物会对运输系统造成损害&#xff0c;影响生产效率&#xff0c;甚至引发安全事故。为了实时监测并识别这些异物&#xff0c;现代技术采用AI算法进行分析…

QT串口读取Serial->readAll()踩过的坑

QT串口读取Serial->readAll接收不完全踩过的坑 Chapter1 QT串口读取Serial->readAll()踩过的坑坑一&#xff1a;坑二 Chapter2 [QT串口上位机BUG解决]json解析数据bug以及接收数据问题问题描述原因分析&#xff1a;解决方案&#xff1a;一、是数据采集端&#xff08;单片…

Go语言?IDEA能支持吗?增删查走起?

序&#xff1a; 最近突然身边突然开始冒出关于go语言的只言片语&#xff0c;很好奇这个go语言是怎么样的&#xff1f;这几天有空就会去网上浏览一遍各位大咖的简介。这边主要是已学习为目的&#xff0c;关键人家都说它好这边记录一下学习过程的进坑和爬坑过程供大家娱乐一下。…

OpenCV结构分析与形状描述符(8)点集凸包计算函数convexHull()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 查找一个点集的凸包。 函数 cv::convexHull 使用斯克拉斯基算法&#xff08;Sklansky’s algorithm&#xff09;来查找一个二维点集的凸包&#…

视频回放 | DolphinDB 2024 年度峰会主会场演讲精彩回顾

9 月 6 日&#xff0c;“以实时&#xff0c;见未来” DolphinDB 2024 年度峰会在杭州成功举办。上午&#xff0c;DolphinDB 创始团队与技术团队分别从不同方面介绍了 DolphinDB 这一年来的创新和突破。没来到现场没关系&#xff0c;现在就为您送上全场完整视频回放~&#xff08…

Pyspark下操作dataframe方法(1)

文章目录 Pyspark dataframe创建DataFrame使用Row对象使用元组与scheam使用字典与scheam注意 agg 聚合操作alias 设置别名字段设置别名设置dataframe别名 cache 缓存checkpoint RDD持久化到外部存储coalesce 设置dataframe分区数量collect 拉取数据columns 获取dataframe列 Pys…

CnCrypt(磁盘加密工具绿色版是一款功能强大磁盘加密工具,供大家学习研究参考

CnCrypt(磁盘加密工具)特点 加密单个分区或整个硬盘,所有加密都是以分区为基础的 提供两级方案,以应对被强迫说出密码的情况(如抢劫。隐藏分区(覆盖式密码术,steganography)无法探测到CnCrypt 加密分区(加密数据会被认为是随机数据)。 CnCrypt(磁盘加密工具)特色 1、加密U…

ucx 编译安装检验方式备忘

1&#xff0c; 下载配置编译 预备依赖&#xff1a; sudo apt-get install valgrind sudo apt-get install libibverbs-dev librdmacm-dev 1.1 下载源码 git clone --recursive https://github.com/openucx/ucx.git cd ucx/ git checkout v1.16.0 git 下来的代码&#xff0c;…

《Diffusion Models Without Attention》CVPR2024

摘要 这篇论文探讨了在高保真图像生成领域&#xff0c;去噪扩散概率模型&#xff08;Denoising Diffusion Probabilistic Models, DDPMs&#xff09;的重要性。尽管DDPMs在捕捉复杂视觉分布方面表现出色&#xff0c;但在高分辨率图像生成上面临显著的计算挑战。现有的方法&…

Vue邮件发送:如何有效集成邮件发送功能?

vue邮件发送功能实现方法&#xff1f;Vue邮件发送性能怎么优化&#xff1f; 无论是用户注册验证、密码重置&#xff0c;还是通知提醒&#xff0c;邮件发送功能都能提供重要的支持。本文将详细探讨如何在Vue项目中有效集成邮件发送功能&#xff0c;确保邮件能够准确、及时地送达…