《OpenCV计算机视觉》—— 图像轮廓检测与绘制

文章目录

  • 一、轮廓的检测
  • 二、轮廓的绘制
    • 图像轮廓检测与绘制的代码实现
  • 三、轮廓的近似

一、轮廓的检测

  • 轮廓检测是指在包含目标和背景的数字图像中,忽略背景和目标内部的纹理以及噪声干扰的影响,采用一定的技术和方法来实现目标轮廓提取的过程
  • 注意:做轮廓检测前需要将图片读取为二值数据,即像素值只为0和255
  • 轮廓检测所用到的函数为 cv2.findcontours(img, mode, method)
  • 参数介绍:
    • image:需要实现轮廓检测的原图
    • mode:轮廓的检索模式,主要有四种方式:
      • CV2.RETR_EXTERNAL:只检测外轮廓,所有子轮廓被忽略
      • CV2.RETR_LIST:检测的轮廓不建立等级关系,所有轮廓属于同一等级。
      • CV2.RETR_CCOMP: 检索所有的轮廓,并建立一个两级层次结构,其中上面的一层为外边界,里面的一层为内孔的边界轮廓。
      • CV2.RETR_TREE:返回所有的轮廓,建立一个完整的组织结构的轮廓。
    • method:轮廓的近似方法,主要有以下两种:
      • CV2.CHAIN_APPROX_NONE:存储所有的轮廓点。
      • CV2.CHAIN_APPROX_SIMPLE:压缩模式,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廊信息。
  • 返回的参数:image,contours,hierarchy
    • image:返回处理的原图(在 OpenCV 4.x 中这个返回值已经被移除)
    • contours:包含图像中所有轮廓的list对象。其中每一个独立的轮廓信息以边界点坐标(x,y)的形式储存在numpy数组中。
    • hierarchy:轮廓的层次结构。一个包含4个值的数组:[Next,Previous,First child,Parent]
      • Next:与当前轮廓处于同一层级的下一条轮廓
      • Previous:与当前轮廓处于同一层级的上一条轮廓
      • First Child:当前轮廓的第一条子轮廓
      • Parent:当前轮廓的父轮廓

二、轮廓的绘制

  • cv2.drawContours()函数是用于在图像上绘制轮廓
  • 参数介绍:cv2.drawContours(image, contours, contourIdx, color, thickness=None
    lineType=None, hierarchy=None, maxLevel=None, offset=None)
    • image:要在其上绘制轮廓的输入图像(在原图中画)。
    • contours:轮廓列表,通常由cv2.findContours()函数返回。
    • contourIdx:要绘制的轮廓的索引。如果为负数,则绘制所有轮廓。–> -1
    • color:轮廓的颜色,以BGR格式表示。例如,(0,255,0)表示绿色。
    • thickness:轮廓线的粗细,默认值为1。
    • lineType:轮廓线的类型。默认值为cV2.LINE_8
    • hierarchy:轮廓层次结构。通常由cv2.findContours()函数返回.
    • maxLevel:绘制的最大轮廓层级。默认值为None,表示绘制所有层级。
    • offset:轮廓点的偏移量。默认值为None。

图像轮廓检测与绘制的代码实现

import cv2# 读取图片
phone = cv2.imread('phone.png')
phone_gray = cv2.cvtColor(phone, cv2.COLOR_BGR2GRAY)  # 转换为灰度图# 阙值处理为二值(黑白图像)
ret, phone_binary = cv2.threshold(phone_gray, 120, 255, cv2.THRESH_BINARY)
# 查找图像轮廓  cv2.RETR_LIST --> 查找所有轮廓,且不建立等级关系
_, contours, hierarchy = cv2.findContours(phone_binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# 查看轮廓的层次结构
print(hierarchy)
# 查看一共有多少的轮廓
print(len(contours))# 绘制所有的轮廓
Contours_show = cv2.drawContours(phone, contours=contours, contourIdx=-1, color=(0, 255, 0), thickness=3)# 显示灰度图和在原图中绘出轮廓后的图
cv2.imshow('phone_gray', phone_gray)
cv2.imshow('Contours_show', Contours_show)# 等待任意键按下后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 结果如下
    在这里插入图片描述

三、轮廓的近似

  • 轮廓的近似是计算机视觉和图像处理中的一个常用技术。它可以帮助我们简化轮廓的形状,去除一些不必要的细节,同时保持轮廓的主要形状特征。

  • 在OpenCV中,可以使用cv2.approxPolyDP()函数来近似一个轮廓。这个函数基于 Douglas-Peucker 算法,该算法通过迭代的方式简化轮廓的顶点集合,以生成一个近似于原始轮廓的多边形,但顶点数量更少。这在处理图像中的形状时非常有用,特别是当你想要去除轮廓上的小噪点或不必要的细节,同时保留其主要形状特征时。

  • 参数解释:cv2.approxPolyDP(curve, epsilon, closed)

    • curve:输入轮廓,通常是一个由点组成的 NumPy 数组,这些点定义了轮廓的形状。
    • epsilon:近似的精度参数。它是原始轮廓到近似多边形之间的最大距离。较小的 epsilon 值意味着近似多边形将更接近原始轮廓,但可能会包含更多的顶点。较大的 epsilon 值会导致生成一个更简单的多边形,但可能会丢失一些细节。
    • closed:一个布尔值,指定近似多边形是否应该是封闭的。如果为 True,则函数将确保近似多边形是封闭的,即第一个和最后一个顶点将相同。
  • 返回值 approx 是一个新的 NumPy 数组,包含了近似多边形的顶点。

  • 代码实现

    import cv2# 读取图像
    he = cv2.imread('he.png')# 转换为灰度图像
    he_gray = cv2.cvtColor(he, cv2.COLOR_BGR2GRAY)# 应用阈值处理
    ret, he_thresh = cv2.threshold(he_gray, 120, 255, cv2.THRESH_BINARY)# 查找轮廓
    _, contours, hierarchy = cv2.findContours(he_thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)# 创建一个新图像用于绘制轮廓
    he_new = he.copy()# 遍历所有轮廓
    for cnt in contours:# 轮廓近似# cv2.arcLength()函数用于计算轮廓的周长(近似的精度设置为周长的0.2%)epsilon = 0.002 * cv2.arcLength(cnt, True)  # 可以调整epsilon的值以获得不同的近似精度approx = cv2.approxPolyDP(cnt, epsilon, True)# 绘制近似后的轮廓cv2.drawContours(he_new, [approx], 0, (0, 255, 0), 3)# 显示原始图像和带有轮廓的图像
    cv2.imshow('Original Image', he)
    cv2.imshow('Image with Contours', he_new)# 等待任意键按下后关闭所有窗口
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
    • 结果如下
      在这里插入图片描述
    • 由结果可以看出轮廓的近似结果就是一个近似于原始轮廓的多边行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/424589.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux驱动开发-磁盘管理

目录 一、mount基本语法 二、常见选项 三、常用命令 二 fdisk --磁盘分区工具 fdisk作用 命令格式: 选项 分区示例 查看分区情况 -p 删除分区 -d 新增分区 -n 修改分区类型 —— t 保存之前所有的操作 —— w 在Linux系统中,mount命令是一种…

redis-shake v4全量增量同步redis数据

1 概述 RedisShake是一个用于处理和迁移 Redis 数据的工具,github地址是https://github.com/tair-opensource/RedisShake。它提供以下特性: 1)Redis 兼容性: RedisShake 兼容从 2.8 到 7.2 的 Redis 版本,并支持各种部…

Parallels Desktop 20 for Mac中文版发布了?会哪些新功能

Parallels Desktop 20 for Mac 正式发布,完全支持 macOS Sequoia 和 Windows 11 24H2,并且在企业版中引入了全新的管理门户。 据介绍,新版本针对 Windows、macOS 和 Linux 虚拟机进行了大量更新,最大的亮点是全新推出的 Parallels…

微软面向所有用户推出 Xbox Game Pass Standard

2024 年 8 月下旬,微软启动了 Xbox Game Pass Standard 的公开测试,这是其不断发展的 Game Pass 套餐中的一个新层级。几周后的今天,Xbox Game Pass 标准版已向支持地区的所有 Xbox 用户开放。 Xbox Game Pass 标准版每月收费 14.99 美元。以…

[Linux]:进程间通信(上)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程间通信介绍 1.1 进程间通信的概念 进程间通信简称IPC(In…

我对 monorepo 的一些思考

我对 monorepo 的一些思考 我对 monorepo 的一些思考 前言它的由来技术选型 管理工具语言与打包调试工具测试框架代码规范与质量控制本地引用与发包替换发包流程Github 相关配置部署 使用手册 功能特性总结如何使用?清除默认的包(可选)模板包介绍 packagesapps 更新…

GPU池化为实现Robotaxi按下快进键

日前,甲子光年智库推出《2022中国Robotaxi行业研究报告:探寻规模化商业落地之路》。Robotaxi(无人驾驶出租车)是自动驾驶技术发展应用的终极目标之一,新基建下的智慧共享出行将链接贯穿未来数智化生活全场景。 该报告从…

七. 部署YOLOv8检测器-quantization-analysis

目录 前言0. 简述1. 案例运行2. 补充说明3. 量化分析4. 探讨总结下载链接参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》,链接。记录下个人学习笔记,仅供自己参考 本次课程我们来学习课程第七章—部署YOLOv8检测器,一起来学习…

C语言:链表

链表是一种常见的基础数据结构,它由一系列节点(Node)组成。每个节点包含两部分:数据域(存储数据)和指针域(存储下一个节点的地址)。链表的特点是元素在内存中不一定连续存储&#xf…

BUUCTF 之Basic 1(BUU LFI COURSE 1)

1、启动靶场,会生成一个URL地址,打开给的URL地址,会看到一个如下界面 可以看到是一个PHP文件,非常的简单,就几行代码,判断一下是否有一个GET的参数,并且是file名字,如果是并且加载&a…

GEE:连续变化检测与分类(Continuous Change Detection and Classification, CCDC)教程

连续变化检测与分类(Continuous Change Detection and Classification, CCDC)是一种土地变化监测算法,旨在对卫星数据的时间序列进行操作,特别是Landsat数据。CCDC包括两个部分,其一是变化检测算法(Change …

python小脚本,实时监测服务器是否宕机状态,并发送到指定群组

一,前言 众所周知,市面上监控软件很多,有Zabbix,Prometheus等,但对于相对简单的功能,需要第一时间发现问题,如服务器宕机,zabbix和Prometheus都需要等几分钟才会报警。 想到最原始…

故障排查:VMware虚拟机网络冲突,导致VPN网络无法正常访问

故障现象 某台windows10系统电脑,远程拨号SSL VPN后,无法正常公司内网。通过排查,发现重启开机,操作系统的默认路由多了一条公司内网的默认路由,但网关不正确。手动删除,重启系统又恢复原样。 排查过程 c…

adb的安装和使用 以及安装Frida 16.0.10+雷电模拟器

.NET兼职社区 .NET兼职社区 .NET兼职社区 1.下载adb Windows版本:https://dl.google.com/android/repository/platform-tools-latest-windows.zip 2.配置adb环境变量 按键windowsr打开运行,输入sysdm.cpl,回车。 高级》环境变量》系统变量》…

OpenCV结构分析与形状描述符(20)计算一个包围给定点集的最小外接圆函数minEnclosingCircle()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 找到一个包围二维点集的最小面积的圆。 该函数使用迭代算法来寻找一个二维点集的最小外接圆。这意味着函数将会通过反复逼近的过程来计算出能够…

多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测

多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测 目录 多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于BO-LSSVM贝叶斯优化最小二乘支…

莎朗斯通的比基尼视频曝光了她的日常锻炼!自爆曾在重症监护室呆了9天

如果您错过了,莎朗斯通 (Sharon Stone) 的华丽比基尼视频向您展示了她的日常锻炼! 9 月 12 日,斯通分享了一段她在泳池里锻炼的视频。她分享了这段视频,并配文:“我刚刚和教练 kristinemarie_18 完成了最后一次锻炼&a…

【Python刷题】Atcoder Beginner Contest 371

目录 A - Jiro题目描述算法思路代码实现 B - Taro题目描述算法思路代码实现 D - 1D Country题目描述算法思路代码实现 E - I Hate Sigma Problem题目描述算法思路代码实现 A - Jiro 题目描述 有三个人,知道他们之中每两个人的年龄关系,输出年龄第二大的…

Unity实现自己的协程系统

为什么自己实现一套协程系统 协程(Coroutine)是一个强大且灵活的工具,它可以帮助开发者处理异步任务,例如等待某些事件、处理逐帧更新等。在Unity中,协程通常通过IEnumerator来实现,这种机制允许代码在执行…

效率神器来了:AI工具手把手教你快速提升工作效能

随着科技的进步,AI工具已经成为提升工作效率的关键手段。本文将介绍一些实用的AI工具和方法,帮助你自动化繁琐的重复性任务、优化数据管理、促进团队协作与沟通,并提升决策质量。 背景:OOP AI-免费问答学习交流-GPT 自动化重复性任…