密集行人数据集 CrowdHumanvoc和yolo两种格式,yolo可以直接使用train val test已经划分好有yolov8训练200轮模型

密集行人数据集 CrowdHuman
voc和yolo两种格式,yolo可以直接使用
train val test已经划分好
有yolov8训练200轮模型。

CrowdHuman 密集行人检测数据集

数据集描述

CrowdHuman数据集是一个专为密集行人检测设计的数据集,旨在解决行人密集场景下的检测挑战。该数据集包括了大量的行人图像,涵盖了各种复杂的场景,如街道、广场等人流密集的地方。CrowdHuman数据集的目的是帮助研究人员和开发者提高在拥挤环境中的行人检测精度。

数据规模

数据集已经被划分为三个子集:

  • 训练集 (train):包含用于训练模型的数据。
  • 验证集 (val):包含用于验证模型的数据。
  • 测试集 (test):包含用于最终测试模型性能的数据。

具体的数据量如下:

  • 训练集:已划分好的训练集。
  • 验证集:已划分好的验证集。
  • 测试集:已划分好的测试集。
目标类别

该数据集的目标类别包括:

  1. 行人 (Pedestrian)

此外,数据集中可能存在一些遮挡部分行人的情况,标注信息中可能也会包括这部分信息。

标注格式

数据集中的标注信息支持两种格式:

  1. VOC格式:每个图像都有一个对应的XML文件,记录了每个对象的位置信息(边界框坐标)和类别标签。
  2. YOLO格式:每个图像都有一个对应的TXT文件,记录了每个对象的位置信息(边界框坐标归一化)和类别标签。这种格式可以直接用于YOLO系列模型的训练。
数据集结构

典型的数据集目录结构如下:

1CrowdHuman/
2├── train/
3│   ├── images/
4│   │   ├── img_00001.jpg
5│   │   ├── img_00002.jpg
6│   │   └── ...
7│   ├── labels/
8│   │   ├── img_00001.txt
9│   │   ├── img_00002.txt
10│   │   └── ...
11├── val/
12│   ├── images/
13│   │   ├── img_00001.jpg
14│   │   ├── img_00002.jpg
15│   │   └── ...
16│   ├── labels/
17│   │   ├── img_00001.txt
18│   │   ├── img_00002.txt
19│   │   └── ...
20├── test/
21│   ├── images/
22│   │   ├── img_00001.jpg
23│   │   ├── img_00002.jpg
24│   │   └── ...
25└── yolov8_weights.pt  # 训练了200轮的YOLOv8模型权重文件
应用场景

该数据集可以用于以下应用场景:

  • 公共安全:用于实时监测人流密集区域,提高公共安全水平。
  • 安防监控:辅助安防系统的视频监控,及时发现人群异常情况。
  • 事件响应:在发生紧急事件时,快速识别人群中的异常行为,以便采取相应措施。
  • 科研分析:用于研究行人检测技术,尤其是在人群密集的场景下。

示例代码

以下是一个使用Python和相关库(如OpenCV、PIL等)来加载和展示数据集的简单示例代码:

1import os
2import cv2
3import numpy as np
4from PIL import Image
5
6# 数据集路径
7dataset_path = 'path/to/CrowdHuman/'
8
9# 加载图像和标签
10def load_image_and_label(image_path, label_path):
11    # 读取图像
12    image = Image.open(image_path).convert('RGB')
13    # 解析标签文件
14    with open(label_path, 'r') as infile:
15        lines = infile.readlines()
16        objects = []
17        for line in lines:
18            data = line.strip().split()
19            class_id = int(data[0])  # 假设类别ID为0(行人)
20            x_center, y_center, w, h = map(float, data[1:])
21            objects.append([x_center, y_center, w, h, class_id])
22    return image, objects
23
24# 展示图像
25def show_image_with_boxes(image, boxes):
26    img = np.array(image)
27    class_name = 'Pedestrian'
28    for box in boxes:
29        x_center, y_center, w, h, class_id = box
30        w, h = int(w * img.shape[1]), int(h * img.shape[0])
31        x_center, y_center = int(x_center * img.shape[1]), int(y_center * img.shape[0])
32        xmin, xmax = x_center - w // 2, x_center + w // 2
33        ymin, ymax = y_center - h // 2, y_center + h // 2
34        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
35        cv2.putText(img, class_name, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
36    cv2.imshow('Image with Boxes', img)
37    cv2.waitKey(0)
38    cv2.destroyAllWindows()
39
40# 主函数
41if __name__ == "__main__":
42    subset = 'train'  # 可以选择 'val' 或 'test'
43    images_dir = os.path.join(dataset_path, subset, 'images')
44    labels_dir = os.path.join(dataset_path, subset, 'labels')
45    
46    # 获取图像列表
47    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
48    
49    # 随机选择一张图像
50    selected_image = np.random.choice(image_files)
51    image_path = os.path.join(images_dir, selected_image)
52    label_path = os.path.join(labels_dir, selected_image.replace('.jpg', '.txt'))
53    
54    # 加载图像和标签
55    image, boxes = load_image_and_label(image_path, label_path)
56    
57    # 展示带有标注框的图像
58    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的YOLO TXT标注文件,并在图像上绘制边界框和类别标签。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

示例代码:使用预训练模型进行推理

以下是使用YOLOv8预训练模型进行推理的示例代码:

1import torch
2import cv2
3import numpy as np
4from pathlib import Path
5
6# 数据集路径
7dataset_path = 'path/to/CrowdHuman/'
8subset = 'test'  # 可以选择 'train' 或 'val'
9
10# 加载预训练模型
11weights_path = os.path.join(dataset_path, 'yolov8_weights.pt')
12model = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_path, force_reload=True)
13
14# 主函数
15if __name__ == "__main__":
16    images_dir = os.path.join(dataset_path, subset, 'images')
17    
18    # 获取图像列表
19    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
20    
21    # 随机选择一张图像
22    selected_image = np.random.choice(image_files)
23    image_path = os.path.join(images_dir, selected_image)
24    
25    # 使用预训练模型进行推理
26    results = model(image_path)
27    results.show()  # 显示结果
28    results.save()  # 保存结果图像

这段代码展示了如何使用YOLOv8预训练模型进行推理,并显示和保存推理结果。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。如果您需要使用YOLOv8模型进行更高级的功能,如模型微调或增量训练,可以参考YOLOv8的官方文档来进行相应的配置和操作。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427636.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于实时数仓的几点技术分享

一、实时数仓建设背景 业务需求的变化:随着互联网和移动互联网的快速发展,企业的业务需求变得越来越复杂和多样化,对数据处理的速度和质量要求也越来越高。传统的T1数据处理模式已经无法满足企业的需求,实时数据处理成为了一种必…

什么是 IP 地址信誉?5 种改进方法

IP 地址声誉是营销中广泛使用的概念。它衡量 IP 地址的质量,这意味着您的电子邮件进入垃圾邮件或被完全阻止发送的可能性。 由于每个人都使用专用电子邮件提供商而不是直接通过 IP 地址进行通信,因此,这些服务可以跟踪和衡量发件人的行为质量…

表情包创作、取图小程序端(带流量主)

小程序永久免费,无任何广告,无任何违规功能! 小程序具备以下功能有: 支持创作者加入 支持在线制作表情包 使用说明 表情包必备工具,一款专属于你的制作表情包工具,斗图必备神器

Linux下进程通信与FIFO操作详解

Linux下进程通信与FIFO操作详解 一、命名管道(FIFO)概述1.1 命名管道的特点1.2 创建命名管道二、命名管道的操作2.1 打开命名管道2.2 读写命名管道2.3 关闭命名管道三、命名管道的使用实例3.1 命名管道的创建和通信过程3.1.1 发送方(writer)3.1.2 接收方(reader)3.2 运行…

python 爬虫 selenium 笔记

todo 阅读并熟悉 Xpath, 这个与 Selenium 密切相关、 selenium selenium 加入无图模式,速度快很多。 from selenium import webdriver from selenium.webdriver.chrome.options import Options# selenium 无图模式,速度快很多。 option Options() o…

Qt/C++事件过滤器与控件响应重写的使用、场景的不同

在Qt/C中,事件过滤器和控件响应重写是两种用于捕获和处理鼠标、键盘等事件的机制,它们的用途和使用场景不同,各有优劣。下面详细介绍它们的区别、各自适用的场景、以及混合使用的场景和注意事项。 1. 事件过滤器(Event Filter&…

全能OCR神器GOT-OCR2.0整合包部署教程

项目地址:https://github.com/Ucas-HaoranWei/GOT-OCR2.0 整合包下载:https://pan.quark.cn/s/3757da820e65 显卡建议使用RTX 30以上的 ①先安装NVIDIA显卡驱动: https://www.nvidia.cn/drivers/lookup/ 输入显卡型号搜索就行 ②安装CUDA 工具包 cu…

Django 聚合查询

文章目录 一、聚合查询二、使用步骤1.准备工作2.具体使用3.分组查询(annotate)1.定义2.使用3.具体案例 4.F() 查询1.定义2.使用 5.Q() 查询1.定义2.查询 一、聚合查询 使用聚合查询前要先从 django.db.models 引入 Avg、Max、Min、Count、Sum&#xff0…

力扣 2529.正整数和负整数的最大计数

文章目录 题目介绍解法 题目介绍 解法 采用红蓝染色体法,具体介绍参考 红蓝染色体法 通过红蓝染色体法可以找到第一个大于大于target的位置,使所以本题可以找第一个大于0的位置,即负整数的个数;数组长度 - 第一个大于1的位置即正…

【踩坑】装了显卡,如何让显示器从主板和显卡HDMI都输出

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 背景介绍 装了显卡后,开机默认是从显卡的HDMI输出,但这很不方便。如何让视频仍然从主板输出?或者说让显卡HDMI和主板…

切线空间:unity中shader切线空间,切线矩阵,TBN矩阵 ,法线贴图深度剖析

unity中shader切线空间 看了网上各种解释,各种推理。直接脑袋大。感觉复杂的高大上。当深入了解后,才发是各种扯淡。 一切从模型法向量开始 在shader中,大部分的光照计算都是与法向量有关。通过法向量和其他向量能计算出模型在光线照射下的…

MyBatis-Plus分页查询、分组查询

目录 准备工作1. 实体类2. Mapper类3. 分页插件4. 数据 分页查询1. 使用条件构造器2. 使用自定义sql 分组查询1. 分组结果类2. 自定义sql3. 测试类 准备工作 1. 实体类 对地址字段address使用字段类型转换器,将List转为字符串数组保存在数据库中 package com.exa…

【CSS Tricks】一种基于AV1视频格式的现代图像格式-AVIF

引言 AV1图像文件格式(英语:AV1 Image File Format,简称AVIF)是由开放媒体联盟(AOM)开发,采用AV1视讯编码技术压缩图像的一种图像文件格式,能用来储存一般的图像和动态图像。AVIF和苹…

torch.embedding 报错 IndexError: index out of range in self

文章目录 1. 报错2. 原因3. 解决方法 1. 报错 torch.embedding 报错: IndexError: index out of range in self2. 原因 首先看下正常情况: import torch import torch.nn.functional as Finputs torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) embedd…

【Git原理与使用】版本管理与分支管理(1)

目录 一、基本操作 1、初识Git 2、Git安装[Linux-centos] 3、Git安装[ Linnx-ubuntu] 4、创建git本地仓库 5、配置Git 6、认识工作区、暂存区、版本库 7、添加文件 8、查看历史提交记录 9、查看.git文件目录结构 10、查看版本库对象的内容 11、小结(在本地的.git仓库…

JVM常用参数配置

JVM常用参数配置 简单的java命令后面跟上配置参数。 -XX,JVM启动参数的一种类型,属于高级。 ,开启的意思 :,设置具体参数 #jvm启动参数不换行 #设置堆内存 -Xmx4g -Xms4g #指定GC算法 -XX:UseG1GC -XX:MaxGCPauseM…

Qt_多元素控件

目录 1、认识多元素控件 2、QListWidget 2.1 使用QListWidget 3、QTableWidget 3.1 使用QListWidget 4、QTreeWidget 4.1 使用QTreeWidget 5、QGroupBox 5.1 使用QGroupBox 6、QTabWidget 6.1 使用QTabWidget 结语 前言: 在Qt中,控件之间…

《深度学习》—— 神经网络模型对手写数字的识别

神经网络模型对手写数字的识别 import torch from torch import nn # 导入神经网络模块 from torch.utils.data import DataLoader # 数据包管理工具,打包数据, from torchvision import datasets # 封装了很多与图像相关的模型,数据集 from torchvi…

分布式事务seata

文章目录 CAP理论BASE 理论seata解决分布式事务seata重要对象XA模式AT模式TCC模式saga模式 CAP理论 CAP理论指出在分布式系统中三个属性不可能同时满足。 Consistency 一致性:在分布式的多个节点(副本)的数据必须是一样的(强一致…

展锐平台的手机camera 系统开发过程

展锐公司有自己的isp 图像处理引擎,从2012 年底就开始在智能手机上部署应用。最初的时候就几个人做一款isp的从hal 到kernel 驱动的完整软件系统,分工不是很明确,基本是谁擅长哪些就搞哪些,除了架构和编码实现之外,另外…