AI大模型微调训练营,全面解析微调技术理论,掌握大模型微调核心技能

一、引言

随着人工智能技术的飞速发展,大型预训练模型(如GPT、BERT、Transformer等)已成为自然语言处理、图像识别等领域的核心工具。然而,这些大模型在直接应用于特定任务时,往往无法直接达到理想的性能。因此,微调(Fine-tuning)技术应运而生,它允许我们在保持大模型核心结构不变的基础上,针对特定任务进行微调,从而提升模型在该任务上的性能。本文将全面解析微调技术理论,并介绍如何通过AI大模型微调训练营掌握核心技能。

二、微调技术理论解析

微调原理

微调技术的核心思想是利用大型预训练模型中的参数作为初始值,通过在新任务上的少量数据进行训练,使模型参数适应新任务。这种方法能够充分利用大模型在海量数据上学习到的知识,同时避免从头开始训练新模型所需的大量时间和计算资源。

微调策略

  • (1)冻结部分层:在微调过程中,可以选择冻结预训练模型中的部分层,仅对剩余层进行训练。这样可以减少计算量,同时保留大模型在预训练阶段学习到的通用知识。

  • (2)学习率调整:学习率是训练过程中的重要超参数,影响着模型参数的更新速度。在微调过程中,需要根据任务的复杂度和数据的规模来合理设置学习率,以保证模型能够有效地收敛。

  • (3)正则化技术:为了防止过拟合,可以在微调过程中采用正则化技术,如L1/L2正则化、Dropout等。这些技术能够降低模型的复杂度,提高模型的泛化能力。

微调优势

  • (1)提高性能:通过微调,可以使大模型更好地适应新任务,从而提高模型在该任务上的性能。

  • (2)节省资源:相比于从头开始训练新模型,微调可以在保持大模型结构不变的基础上,仅对部分参数进行训练,从而节省大量时间和计算资源。

三、AI大模型微调训练营:核心技能掌握

选择合适的预训练模型:根据任务的需求和数据的特点,选择合适的预训练模型作为起点。需要考虑模型的规模、结构、预训练数据等因素。
数据预处理:对训练数据进行清洗、标注、增强等预处理操作,以提高数据的质量和多样性。这有助于提升模型在新任务上的性能。
搭建微调框架:使用深度学习框架(如TensorFlow、PyTorch等)搭建微调框架,配置模型结构、学习率、优化器等参数。
训练与评估:在微调框架上进行模型训练,并使用验证集对模型进行评估。根据评估结果调整超参数和训练策略,以优化模型性能。
模型部署与应用:将训练好的模型部署到实际场景中,进行应用测试和性能优化。根据实际需求对模型进行迭代改进,以满足更高的性能要求。

四、总结

本文全面解析了AI大模型微调技术理论,并介绍了如何通过AI大模型微调训练营掌握核心技能。通过选择合适的预训练模型、进行数据预处理、搭建微调框架、训练与评估以及模型部署与应用等步骤,我们可以充分利用大模型的优势,提升模型在新任务上的性能。希望本文能为读者在AI大模型微调领域的学习和实践提供有价值的参考。


最后如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖

在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/430676.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RPA + 计算机视觉

随着超自动化成为顶级企业技术趋势之一,领先的机器人流程自动化 (RPA) 公司开始将人工智能功能集成到其自动化工具中,以创建能够自动化端到端流程并做出决策的智能机器人。计算机视觉是新一代 RPA 工具的关键 AI 功能之一。 在本文中,我们将…

Elasticsearch:检索增强生成背后的重要思想

作者:来自 Elastic Jessica L. Moszkowicz 星期天晚上 10 点,我九年级的女儿哭着冲进我的房间。她说她对代数一无所知,注定要失败。我进入超级妈妈模式,却发现我一点高中数学知识都不记得了。于是,我做了任何一位超级妈…

web学习——VUE

VUE&Element 今日目标: 能够使用VUE中常用指令和插值表达式能够使用VUE生命周期函数 mounted能够进行简单的 Element 页面修改能够完成查询所有功能能够完成添加功能 1,VUE 1.1 概述 接下来我们学习一款前端的框架,就是 VUE。 Vue 是…

二.python基础语法

目录 1.第一个python实例 2.python编码规范 2.1.编写规则 2.2.命名规范 2.3. 空格 2.4. 缩进 2.5. 注释 3.python关键字和标识符 3.1.标识符 3.2.关键字 4.python变量 4.1. 定义变量 4.2. 变量类型是可变的 4.3. 多个变量指向同一个值 5.python基本数据类型 5.…

OpenCV特征检测(12)检测图像中的潜在角点函数preCornerDetect()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算用于角点检测的特征图。 该函数计算源图像的基于复杂空间导数的函数 dst ( D x src ) 2 ⋅ D y y src ( D y src ) 2 ⋅ D x x src − 2 …

流水线部署失败排查指南

在现代软件开发中,CI/CD(持续集成/持续交付)流水线是确保代码质量和快速交付的重要工具。然而,部署失败时,排查问题的能力至关重要。以下是一些常见的故障排查步骤和技巧。 ## 1. 检查流水线日志 首先,查看…

一文讲清楚0基础小白如何快速入门大语言模型

1、快速一览 读完可以收获: 快速建立大语言模型的概念、基本原理。 几个概念之间的关系: 人工智能:让机器(或系统)像人一样思考行动。 机器学习:从数据中寻找规律、建立关系,根据建立的关系去…

OpenHarmony(鸿蒙南向开发)——小型系统内核(LiteOS-A)【LMS调测】

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 基本概念 LMS全称为Lite Memory Sanitizer,是一种实时…

31省市农业地图大数据

1.北京市 谷类作物种植结构(万亩) 农作物种植结构(万亩) 2.天津市 谷类作物种植结构(万亩) 农作物种植结构(万亩) 3.黑龙江省 谷类作物种植结构(万亩) 农作物…

Appium自动化测试概述

Appium是一个可用于测试iOS、 Android操作系统和Windows桌面平台原生应用,移动网页应用和混合应用的自动化测试框架。 原生应用(Native App):用 android、iOS或者Windows SDK编写的应用 移动网页应用(Web App):通过手机浏览器访问的网页应用,比如iOS中 safari应用,And…

Apache Iceberg Architecture—Iceberg 架构详解

Apache Iceberg Architecture Apache Iceberg 的架构可以分为三个主要层次:Iceberg Catalog、元数据层和数据层。 一、 Iceberg Catalog(目录) Iceberg Catalog 是 Iceberg 的顶层组件,负责管理所有 Iceberg 表的元数据和元数据操…

实现一个基于nio的discard server

写在前面 源码 。 为了能够进一步的熟悉下nio相关的api操作,本文来实现一个基于nio的discard server。 discard server的意思是,server接收到来自client的一个消息之后,直接就将连接关闭,即discard。 1:正戏 1.1&…

振弦式渗压计智慧水利工程 适用恶劣环境有保障

产品概述 振弦式渗压计适合埋设在水工建筑物和基岩内,或安装在测压管、钻孔、堤坝、管道或压力容器中,以测量孔隙水压力或液位。主要部件均采用特殊钢材制造,适合在各种恶劣环境中使用。特殊的稳定补偿技术使传感器具有极小的温度补偿系数。…

瑞芯微RK3588开发板Linux系统添加自启动命令的方法,深圳触觉智能Arm嵌入式鸿蒙硬件方案商

本文适用于触觉智能所有Linux系统的开发板、主板添加自启动命令的方法,本次使用了触觉智能的EVB3588开发板演示,搭载了瑞芯微RK3588旗舰芯片。 该开发板为核心板加底板设计,为工业场景设计研发的模块化产品,10年以上稳定供货,帮助…

java -versionbash:/usr/lib/jvm/jdk1.8.0_162/bin/java:无法执行二进制文件:可执行文件格式错误

实验环境:Apple M1在VMwareFusion使用Utubun Jdk文件错误  尝试: 1、重新在网盘下载java1.8 2、在终端通过命令下载 3、确保 JDK 正确安装在系统中,可以通过 echo $JAVA_HOME 检查 JAVA_HOME 环境变量是否设置正确。 &#xfff…

springboot框架VUE3心理健康服务管理系统开发mysql数据库网页设计java编程计算机网页源码maven项目

博主介绍:专注于Java vue .net php phython 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找不到哟 我的博客空间发布了1000毕设题目 方便大家学习使用 感兴趣的…

Qt系统相关——QThread

文章目录 QThread的API使用示例客户端多线程应用场景互斥锁QMutexQMutexLockerQReadWriteLocker、QReadLocker、QWriteLocker 条件变量和信号量 QThread的API Qt中的多线程和Linux中的线程,本质上是一个东西 Linux线程概念 Linux多线程——线程控制 Linux多线程——…

高效驱动,掌控动力:TB67H400AFNG 马达驱动器

在如今智能设备和自动化应用领域中,驱动器的性能直接决定了系统的可靠性与效率。东芝的TB67H400AFNG有刷直流马达驱动器凭借其卓越的性能,成为众多行业解决方案中的关键部件。无论是工业控制、自动化设备还是消费类电子产品,TB67H400AFNG都能…

【ARM】A64指令介绍及内存屏障和寄存器

A64指令集介绍 ISA : Instruction System Architecture 指令集总结 跳转指令 使用跳转指令直接跳转,跳转指令有跳转指令B,带链接的跳转指令BL ,带状态切换的跳转指令BX。 B 跳转指令,跳转到指定的地址执行程序。 BL 带链接的跳…

stable diffusion 神经网络插件 controlnet 的安装,很详细

stable diffusion 神经网络插件 controlnet 的安装,很详细 一、前言二、下载1、方式一2、方式二 三、下载模型 一、前言 学到 stable diffusion 的 controlnet 插件,安装也略微曲折,这里做个记录。 下载前保证 github 能正常访问。 二、下…