【机器学习案列】基于随机森林和xgboost的二手车价格回归预测

一、项目分析

1.1 项目任务

kaggle二手车价格回归预测项目,目的根据各种属性预测二手车的价格

1.2 评估准则
评估的标准是均方根误差:在这里插入图片描述
1.3 数据介绍
数据连接https://www.kaggle.com/competitions/playground-series-s4e9/data?select=train.csv
在这里插入图片描述
其中:

  • id:唯一标识符(或编号)
  • brand:品牌
  • model:型号
  • model_year:车型年份
  • mileage(注意这里可能是拼写错误,应该是mileage而不是milage):里程数
  • fuel_type:燃油类型
  • engine:发动机
  • transmission:变速器
  • ext_col:车身颜色(外部)
  • int_col:内饰颜色(内部)
  • accident:事故记录
  • clean_title:清洁标题(通常指车辆是否有清晰的产权记录,无抵押、无重大事故等)
  • price:价格

二、读取数据

2.1 导入相应的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split, GridSearchCV
import xgboost as xgb

2.2 读取数据

file_path = '/kaggle/input/playground-series-s4e9/train.csv'
df = pd.read_csv(file_path)df.head()
df.shape()

在这里插入图片描述
在这里插入图片描述

三、Exploratory Data Analysis(EDA)

3.1 车型年份与价格的关系

plt.figure(figsize=(10, 6))
sns.scatterplot(x='model_year', y='price', data=df)
plt.title('Model Year vs Price')
plt.xlabel('Model Year')
plt.ylabel('Price')
plt.show()

在这里插入图片描述
3.2 滞留量与价格的关系

plt.figure(figsize=(10, 6))
sns.scatterplot(x='milage', y='price', data=df)
plt.title('Milage vs Price')
plt.xlabel('Milage')
plt.ylabel('Price')
plt.show()

在这里插入图片描述
3.3 热图检查数值特征之间的关系

num_df = df.select_dtypes(include=['float64', 'int64'])
plt.figure(figsize=(12, 8))
corr_matrix = num_df.corr()
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5, annot_kws={"size": 10})
plt.title('Correlation Matrix', fontsize=16)
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()

在这里插入图片描述
3.4 按品牌统计图表

plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='brand', order=df['brand'].value_counts().index)
plt.title('Count of Cars by Brand', fontsize=16)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

在这里插入图片描述

3.5 箱线图

plt.figure(figsize=(12, 6))
sns.boxplot(data=df, x='fuel_type', y='milage')
plt.title('Mileage by Fuel Type', fontsize=16)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

在这里插入图片描述

1.6 各品牌平均里程数

plt.figure(figsize=(12, 6))
sns.barplot(data=df, x='brand', y='milage', estimator=np.mean, ci=None)
plt.title('Average Mileage by Brand', fontsize=16)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

在这里插入图片描述

四、 数据预测处理

4.1 检查每个特征是否具有不同的值

for i in df.columns:if df[i].nunique()<2:print(f'{i} has only one unique value. ')

clean_title has only one unique value.

“Clean ”功能只有一个唯一值,所以我们可以将其删除。

df.drop(['id','clean_title'],axis=1,inplace=True)
df.shape

(188533, 11)

4.2 缺失值处理

df.isnull().sum().sum()

7535

df.dropna(inplace=True)
df.isnull().sum().sum()

0

没有缺失的值,所以我们可以继续了。

4.3
使用一热编码将分类变量转换为数值格式

df = pd.get_dummies(df, columns=['brand', 'model', 'fuel_type', 'transmission', 'ext_col', 'int_col', 'accident','engine' ], drop_first=True)

五、数据预测

5.1 数据样本和标签分离

X = df.drop('price', axis=1)
y = df['price']

5.2 切分数据集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

5.3 模型训练和评估
5.3.1 Xgboost回归模型

xgb_model = xgb.XGBRegressor(n_estimators=100,      max_depth=5,           learning_rate=0.1,     subsample=0.8,        random_state=42        
)xgb_model.fit(X_train, y_train)y_pred_xgb = xgb_model.predict(X_test)rmse_xgb = np.sqrt(mean_squared_error(y_test, y_pred_xgb))
print(f'XGBoost Root Mean Squared Error: {rmse_xgb}')

XGBoost Root Mean Squared Error: 67003.09126576487

5.3.2 Random Forest回归模型

rf_model = RandomForestRegressor(n_estimators=100,     max_depth=10,         min_samples_split=2,min_samples_leaf=1,    random_state=42      
)rf_model.fit(X_train, y_train)y_pred_rf = rf_model.predict(X_test)rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
print(f'Random Forest Root Mean Squared Error: {rmse_rf}')

Random Forest Root Mean Squared Error: 68418.85393408517

参考文献:
1 https://www.kaggle.com/code/muhammaadmuzammil008/eda-random-forest-xgboost

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/433238.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux相关概念和重要知识点(8)(操作系统、进程的概念)

1.操作系统&#xff08;OS&#xff09; &#xff08;1&#xff09;基本结构的认识 任何计算机系统都包含一个基本的程序集合&#xff0c;用于实现计算机最基本最底层的操作&#xff0c;这个软件称为操作系统。操作系统大部分使用C语言编写&#xff0c;少量使用汇编语言。 从…

即插即用篇 | YOLOv8 引入单头视觉Transformer模块 | CVPR 2024

本改进已同步到YOLO-Magic框架! 最近,高效的视觉Transformer在资源受限的设备上以低延迟表现出了出色的性能。传统上,它们在宏观层面上采用44的Patch嵌入和四阶段结构,而在微观层面上使用多头配置的复杂注意力机制。本文旨在通过内存高效的方式解决各个设计层面的计算冗余问…

[ IDE ] SEGGER Embedded Studio for RISC-V

一、FILE 二、Edit 三、View 四、Search 五、Navigate 六、Project 七、Build 7.1 编译 先选择一个目标类型&#xff0c;再选择编译。 八、Debug​​​​​​​ 九、Target 9.1 烧录代码 十、Tools 10.1 自定义快捷键 点击菜单项&#xff0c;通过Tools –> Options –&g…

软考中级网络工程师选择题

部分参考 软考中级网络工程师全面学习笔记第2版(5万字)配套视频及课件_软考中级网络工程师资料-CSDN博客 1.计算机网络概述 OSI七层模型&#xff1a;物联网淑慧试用 TCP/IP&#xff1a;网网&#xff08;网际层&#xff09;传应 高频考点&#xff1a; 中央处理器CPU 固态硬盘…

【rabbitmq-server】安装使用介绍

在 1050a 系统下安装 rabbitmq-server 服务以及基本配置;【注】:改方案用于A版统信服务器操作系统 文章目录 功能概述功能介绍一、安装软件包二、启动服务三、验证四、基本配置功能概述 RabbitMQ 是AMQP的实现,高性能的企业消息的新标准。RabbitMQ服务器是一个强大和可扩展…

【Oauth2整合gateway网关实现微服务单点登录】

文章目录 一.什么是单点登录&#xff1f;二.Oauth2整合网关实现微服务单点登录三.时序图四.代码实现思路1.基于OAuth2独立一个认证中心服务出来2.网关微服务3产品微服务4.订单微服务5.开始测试单点登录 一.什么是单点登录&#xff1f; 单点登录&#xff08;Single Sign On&…

鸿蒙界面开发(九):列表布局 (List)

列表布局 当列表项达到一定数量&#xff0c;内容超过屏幕大小时&#xff0c;可以自动提供滚动功能。它适合用于呈现同类数据类型或数据类型集&#xff0c;例如图片和文本。在列表中显示数据集合是许多应用程序中的常见要求&#xff08;如通讯录、音乐列表、购物清单等&#xf…

ArcGIS Desktop使用入门(三)常用工具条——拓扑(下篇:地理数据库拓扑)

系列文章目录 ArcGIS Desktop使用入门&#xff08;一&#xff09;软件初认识 ArcGIS Desktop使用入门&#xff08;二&#xff09;常用工具条——标准工具 ArcGIS Desktop使用入门&#xff08;二&#xff09;常用工具条——编辑器 ArcGIS Desktop使用入门&#xff08;二&#x…

Labview helper

IMAQ Advanced Setup Learn Geometric Pattern 2 VI 参数说明Curve Extraction Mode (0)指定VI如何识别图像中的曲线。如果您希望VI不对图像中对象的均匀性或图像背景做出任何假设&#xff0c;请将此选项设置为正常。如果您希望VI假定图像中的对象或图像背景由均匀的像素值组成…

【JVM】一篇文章彻底理解JVM的组成,各组件的底层实现逻辑

文章目录 JVM 的主要组成部分类加载器&#xff08;Class Loader&#xff09;1. 加载&#xff08;Loading&#xff09;2. 链接&#xff08;Linking&#xff09;3. 初始化&#xff08;Initialization&#xff09; Execution Engine&#xff08;执行引擎&#xff09;1. 解释器&…

QT开发:详解 Qt 多线程编程核心类 QThread:基本概念与使用方法

1. 引言 在现代应用程序开发中&#xff0c;多线程编程是一个关键技术&#xff0c;能够显著提高程序的效率和响应速度。Qt 是一个跨平台的 C 框架&#xff0c;其中 QThread 类是实现多线程编程的核心类。本文将深入详解 QThread 的基本概念、使用方法及其在实际应用中的重要性。…

对于 Vue CLI 项目如何引入Echarts以及动态获取数据

&#x1f680;个人主页&#xff1a;一颗小谷粒 &#x1f680;所属专栏&#xff1a;Web前端开发 很荣幸您能阅读我的文章&#xff0c;诚请评论指点&#xff0c;欢迎欢迎 ~ 目录 1、数据画卷—Echarts介绍 1.1 什么是Echarts&#xff1f; 1.2 Echarts官网地址 2、Vue CLI 项目…

第十三周:机器学习笔记

第十三周周报 摘要Abstract一、机器学习——Transformer&#xff08;上&#xff09;1. Sequence to Sequence(Seq 2 Seq&#xff0c;序列到序列模型) 的应用2. Transformer的结构2.1 Transformer encoder&#xff08;Transformer 编码器&#xff09; 二、Pytorch学习1. 网络模型…

将图片资源保存到服务器的盘符中

服务类 系统盘符&#xff1a;file-path.disk&#xff08;可能会变&#xff0c;配置配置文件dev中&#xff09;文件根路径&#xff1a;file-path.root-path&#xff08;可能会变&#xff0c;配置配置文件dev中&#xff09;http协议的Nginx的映射前缀&#xff1a;PrefixConstant.…

go解决引入私有包报错“Repository owner does not exist“的两种方式

当你写好引入的私有包,执行go mod tidy报错: Gogs: Repository owner does not exist fatal: Could not read from remote repository. Please make sure you have the correct access rights and the repository exists. 目前我的两种解决方案: 一、拉群整个…

freeRDP OPenssl

libusb需要下载 我使用的是VS2019编译 所以需要include 与vs2019 在cmake里面修改路径 C:/Users/JPM/source/repos/freeRDP/FreeRDP-stable-2.0/libusb-1.0.24/include/libusb-1.0 C:/Users/JPM/source/repos/freeRDP/FreeRDP-stable-2.0/libusb-1.0.24/VS2019/MS64/static/l…

模形式与态、势、感、知

模形式是数学中一个重要的研究领域&#xff0c;主要出现在数论、代数几何和表示论等多个学科中。模形式可以视为在某种意义上具有“对称性”的函数&#xff0c;这些函数在特定的条件下满足一定的变换性质。具体来说&#xff0c;模形式是定义在上半平面上的复值函数&#xff0c;…

第九节 Opencv自带颜色表操作

知识点&#xff1a;Look Up lTable&#xff08;LUT&#xff09;查找表 了解LUT查找表的作用与用法&#xff0c;代码实现与API介绍 -applyColorMap&#xff08;src,dst,COLORMAP&#xff09; -src表示输入图像 -dst表示输出图像 匹配到的颜色LUT&#xff0c;Opencv支持13种…

TDOA方法求二维坐标的MATLAB代码演示与讲解

引言 时间差定位(Time Difference of Arrival, TDOA)是一种用于确定信号源位置的技术,广泛应用于无线通信、声学定位等领域。通过测量信号到达多个接收器的时间差,可以计算出信号源的二维坐标。本文将通过MATLAB代码演示如何使用TDOA方法来求解二维坐标。 TDOA原理 TDOA…

第50篇 汇编语言实现中断<六>

Q&#xff1a;怎样设计汇编语言程序使用定时器中断实现实时时钟&#xff1f; A&#xff1a;此前我们曾使用轮询定时器I/O的方式实现实时时钟&#xff0c;而在本实验中将采用定时器中断的方式。新增的interval_timer.s间隔定时器的中断服务程序中增加了TIME变量&#xff0c;还更…