自动驾驶系列—深度剖析自动驾驶芯片SoC架构:选型指南与应用实战

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。

🚀 探索专栏:学步_技术的首页 —— 持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。

🔍 技术导航:

  • 人工智能:深入探讨人工智能领域核心技术。
  • 自动驾驶:分享自动驾驶领域核心技术和实战经验。
  • 环境配置:分享Linux环境下相关技术领域环境配置所遇到的问题解决经验。
  • 图像生成:分享图像生成领域核心技术和实战经验。
  • 虚拟现实技术:分享虚拟现实技术领域核心技术和实战经验。

🌈 非常期待在这个数字世界里与您相遇,一起学习、探讨、成长。不要忘了订阅本专栏,让我们的技术之旅不再孤单!

💖💖💖 ✨✨ 欢迎关注和订阅,一起开启技术探索之旅! ✨✨

文章目录

  • 1. 背景介绍
  • 2. 芯片SoC架构详解
    • 2.1 CPU+GPU+ASIC架构
    • 2.2 CPU+ASIC架构
    • 2.3 CPU+FPGA架构
  • 3. 自动驾驶芯片SoC的功能原理
  • 4. SoC选型指南
    • 4.1 计算性能
    • 4.2 功耗与散热
    • 4.3 灵活性与扩展性
    • 4.4 成本与时间
  • 5. 应用场景
  • 6. 总结与讨论

架构类型优势局限性典型应用场景选型建议
CPU+GPU+ASIC高性能计算能力,适用于复杂深度学习任务;集成了通用计算、并行计算和专用加速,处理大规模数据更高效。功耗较高,散热要求高,成本较高,开发周期较长。L4-L5级自动驾驶,城市复杂环境下的自动驾驶,高速公路自动驾驶对计算性能要求高、实时性强的高端自动驾驶系统,可优先选择此架构,适合追求高性能的企业。
CPU+ASIC高计算效率,功耗低,能效比高,适用于固定算法场景,芯片设计更具针对性,性能成本比优异。灵活性较差,算法一旦确定无法轻易更改或升级;ASIC开发周期较长。L2-L3级自动驾驶,自动泊车系统,高速巡航控制针对算法较为固定且功耗敏感的自动驾驶场景,优先选择此架构,适用于长期应用稳定的企业。
CPU+FPGA灵活性高,适用于算法开发和验证阶段,硬件可编程,易于调整和适配多种算法;适合快速原型开发。相对功耗高,性能效率低于ASIC;大规模应用时成本较高,开发难度大。自动驾驶算法验证、传感器数据融合、多传感器感知系统用于早期算法研发和测试阶段,适合对算法变化频繁、需要快速迭代的应用场景,灵活性优先考虑的企业。

表1 自动驾驶芯片SoC架构配置总表

1. 背景介绍

随着自动驾驶技术的飞速发展,芯片系统级架构(SoC)成为了整个系统的核心基础。一个高性能的SoC可以提供强大的计算能力,支持复杂的深度学习算法和实时传感器数据处理。

然而,面对市场上众多的芯片选择,如何找到适合自动驾驶应用场景的SoC架构是一个关键问题

本文将从SoC的架构详解、功能原理、选型指南以及应用场景等方面为您全面剖析,助力您更好地了解并选择合适的自动驾驶芯片。
在这里插入图片描述

2. 芯片SoC架构详解

在自动驾驶领域,常见的SoC架构主要有三种:CPU+GPU+ASICCPU+ASICCPU+FPGA。每种架构都有其独特的优点和适用范围,下面我们将逐一进行详细讲解。

2.1 CPU+GPU+ASIC架构

这种架构将中央处理器(CPU)、图形处理单元(GPU)以及应用特定集成电路(ASIC)相结合,形成一个强大的计算平台。

CPU负责处理通用计算任务,GPU加速图形和深度学习计算,而ASIC则专注于加速特定功能的处理。

关键组件

  • CPU(中央处理器):主要用于执行操作系统、调度任务和处理控制逻辑。CPU适合处理串行计算任务,如任务调度、路径规划等。例如,ARM Cortex-A78AE 是一种高性能的CPU,能够满足复杂计算任务。

  • GPU(图形处理单元):主要用于并行计算,特别适用于深度学习模型的推理与训练。它能同时处理大量数据,提高计算效率。例如,NVIDIA的Xavier SoC中包含512个CUDA核心的GPU,能以更快的速度进行深度学习计算。

  • ASIC(应用特定集成电路):为特定计算任务设计的芯片模块,能够在硬件层面上加速特定算法。例如,NVIDIA Xavier的ASIC模块专门用于神经网络推理,能够显著提升深度学习模型的推理性能。

优势:这种架构能够同时提供高性能的通用计算能力(CPU)、并行计算能力(GPU)和专用计算能力(ASIC),非常适合处理自动驾驶系统中需要实时计算的大规模数据。

应用场景:复杂城市道路的自动驾驶、高速公路自动驾驶。
在这里插入图片描述

2.2 CPU+ASIC架构

这种架构将CPU与ASIC组合在一起,CPU处理通用任务,ASIC则负责特定计算任务的加速。该架构更适用于已经成熟、固定的算法场景。

关键组件

  • CPU(中央处理器):用于执行通用计算任务和控制系统的逻辑。例如,特斯拉的FSD(全自动驾驶)芯片中采用了高性能的CPU来进行任务调度和控制。

  • ASIC(应用特定集成电路):针对性地优化特定算法,如深度学习推理、雷达数据处理等。例如,特斯拉FSD芯片中的ASIC模块能够以更高的效率处理图像识别和感知任务。

优势:CPU+ASIC架构具有更高的计算效率和能效比,适用于对计算性能要求高且算法相对固定的应用场景。

应用场景:自动泊车系统、L3级别自动驾驶。
在这里插入图片描述

2.3 CPU+FPGA架构

该架构结合了CPU与FPGA,CPU负责通用计算任务,FPGA则提供了灵活的硬件加速能力。FPGA的可编程特性,使得该架构非常适合快速算法开发和原型设计。

关键组件

  • CPU(中央处理器):执行操作系统和常规任务,负责系统控制和调度。

  • FPGA(现场可编程门阵列):FPGA能够在现场进行编程和重新配置,适合加速特定算法的实现。可以根据算法的变化快速调整,满足不同场景的计算需求。例如,Waymo的自动驾驶汽车使用FPGA来加速传感器数据处理。

优势:CPU+FPGA架构在算法开发阶段提供了极高的灵活性,能够快速适应算法变化和优化。

应用场景:传感器融合、早期自动驾驶原型开发。
在这里插入图片描述

3. 自动驾驶芯片SoC的功能原理

自动驾驶芯片SoC架构的核心功能原理是将传感器数据处理、深度学习推理、决策与控制等任务集成到一个统一的计算平台中。其主要原理包括:

  • 传感器数据处理:SoC需要实时处理来自摄像头、雷达、激光雷达等传感器的数据,以构建周围环境的感知模型。通常由GPU或FPGA模块加速这一过程。

  • 神经网络推理:自动驾驶需要利用深度学习模型进行物体检测、分类和轨迹预测等任务,ASIC或GPU通常用于加速这些深度学习计算。

  • 决策与规划:SoC利用CPU模块对传感器数据进行综合分析,执行路径规划、车道保持、避障等任务,并将结果输出到执行机构。

4. SoC选型指南

在选择自动驾驶芯片SoC架构时,应考虑以下几个方面:

4.1 计算性能

确保芯片具备足够的计算能力,能够满足深度学习推理、传感器数据处理等任务的需求。通常,CPU+GPU+ASIC架构在计算性能上最为强大,适用于高性能需求的L4-L5级自动驾驶系统。

4.2 功耗与散热

自动驾驶芯片在高负载下往往会产生大量热量,选择功耗低、散热设计良好的SoC架构至关重要。CPU+ASIC架构在这方面表现较好,适合能耗敏感的应用。

4.3 灵活性与扩展性

对于处于研发阶段或需要快速迭代的自动驾驶系统,CPU+FPGA架构提供了更高的灵活性,能够快速调整硬件加速模块以适应算法的变化。

4.4 成本与时间

选择SoC架构时,还需考虑芯片的成本和上市时间。CPU+GPU+ASIC架构通常价格较高,但性能最佳,适合对成本不敏感的高端应用。

以下是目前自动驾驶领域常用的自动驾驶SoC具体型号,以及其对应的特点和应用场景:

企业SoC型号架构类型主要特点典型应用场景
英伟达 (NVIDIA)NVIDIA DRIVE OrinCPU+GPU+ASIC拥有2048个CUDA核心和72个第三代Tensor Core,集成了Arm Cortex-A78AE CPU,算力高达254 TOPS,适用于深度学习和神经网络推理L4-L5级自动驾驶,支持复杂环境感知与决策
NVIDIA DRIVE XavierCPU+GPU+ASIC集成512个CUDA核心和8个ARM CPU核心,算力为30 TOPS,低功耗,具备深度学习推理能力L2-L3级自动驾驶,自动泊车和高速公路驾驶辅助
特斯拉 (Tesla)Tesla FSD (Full Self-Driving) ChipCPU+ASIC集成了2个高性能NPU(每个NPU具备36 TOPS算力)、ARM Cortex-A72 CPU,专为自动驾驶设计,低功耗高效率全自动驾驶,L3-L4级自动驾驶
Mobileye (英特尔子公司)EyeQ5CPU+ASIC包含18个核的专用加速器,具备15 TOPS算力,支持深度学习推理和计算机视觉,低功耗L2-L4级自动驾驶,ADAS高级驾驶辅助
EyeQ6CPU+ASIC算力达到36 TOPS,进一步增强了对深度学习和感知任务的处理能力,具有更高的能效比L2-L4级自动驾驶,传感器融合与感知系统
高通 (Qualcomm)Snapdragon RideCPU+GPU+ASIC集成了Hexagon DSP、Adreno GPU和Kryo CPU,最高算力达到140 TOPS,支持5G连接,适用于多传感器融合L2-L3级自动驾驶,适用于多传感器融合与导航
华为 (Huawei)Ascend 310CPU+AI Accelerator具有16 TOPS INT8和8 TOPS FP16的算力,适用于边缘计算,支持深度学习推理和视觉处理L2-L3级自动驾驶,视觉感知与路径规划
地平线 (Horizon Robotics)Journey 3 (征程3)CPU+NPU算力达到5 TOPS,适用于辅助驾驶,支持计算机视觉和深度学习推理,低功耗设计L2级驾驶辅助,ADAS应用
Journey 5 (征程5)CPU+NPU算力高达96 TOPS,专为高性能计算而设计,能够支持L3-L4级别的自动驾驶任务L3-L4级自动驾驶,城市道路与高速公路场景
瑞萨电子 (Renesas)R-Car V3HCPU+ASIC集成四核ARM Cortex-A57和两个视觉引擎,适用于计算机视觉和目标检测,低功耗L2-L3级自动驾驶,ADAS高级辅助驾驶
R-Car V3MCPU+ASIC支持传感器数据融合,适合用于视觉处理和物体识别,功耗低于5WL2级自动驾驶,车道保持辅助

5. 应用场景

  • CPU+GPU+ASIC架构:适用于L4-L5级自动驾驶,要求高性能的深度学习模型推理和实时处理的复杂场景。

  • CPU+ASIC架构:适用于L2-L3级别的高级辅助驾驶系统,具有高效能与较低的功耗需求。

  • CPU+FPGA架构:用于自动驾驶算法开发、传感器数据融合、模型验证等,需要灵活调整的场景。

6. 总结与讨论

不同的SoC架构在自动驾驶领域各有其优势和局限。对于高性能需求和实时性要求较高的L4-L5级自动驾驶系统,CPU+GPU+ASIC架构是首选;而对能效要求较高、算法相对固定的系统,CPU+ASIC架构是更具性价比的选择;在算法开发和测试阶段,CPU+FPGA架构则是一个理想的选择。

随着技术的不断发展,自动驾驶SoC架构将朝着更高性能、更低功耗、更强扩展性的方向演进。我们需要根据实际的应用场景和计算需求,灵活选择合适的SoC架构,以实现自动驾驶系统的最佳性能与稳定性。

🌟 在这篇博文的旅程中,感谢您的陪伴与阅读。如果内容对您有所启发或帮助,请不要吝啬您的点赞 👍🏻,这是对我最大的鼓励和支持。

📚 本人虽致力于提供准确且深入的技术分享,但学识有限,难免会有疏漏之处。如有不足或错误,恳请各位业界同仁在评论区留下宝贵意见,您的批评指正是我不断进步的动力!😄😄😄

💖💖💖 如果您发现这篇博文对您的研究或工作有所裨益,请不吝点赞、收藏,或分享给更多需要的朋友,让知识的力量传播得更远。

🔥🔥🔥 “Stay Hungry, Stay Foolish” —— 求知的道路永无止境,让我们保持渴望与初心,面对挑战,勇往直前。无论前路多么漫长,只要我们坚持不懈,终将抵达目的地。🌙🌙🌙

👋🏻 在此,我也邀请您加入我的技术交流社区,共同探讨、学习和成长。让我们携手并进,共创辉煌!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437443.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

物联网将如何影响全球商业?

互联网使人们能够交流,企业能够全天候不间断地跨洋跨洲持续运营。它重塑、颠覆并催生了新的产业,改变了人类与世界互动的方式。互联网曾经仅仅是一种方便、快捷、廉价的向世界各地发送信息的方式,而现在,只需打开或关闭任何连接到…

【C++】树形结构的关联式容器:set、map、multiset、multimap的使用

🌻个人主页:路飞雪吖~ ✨专栏:C/C 目录 一、set的简单介绍和使用 🌟set的介绍 🔥注意: 🌠小贴士: 🌟set的使用 ✨set的构造 ✨set的迭代器 ​编辑 ✨set的容量 …

Html--笔记01:使用软件vscode,简介Html5--基础骨架以及标题、段落、图片标签的使用

一.使用VSC--全称:Visual Studio Code vscode用来写html文件,打开文件夹与创建文件夹:①选择文件夹 ②拖拽文件 生成浏览器的html文件的快捷方式: !enter 运行代码到网页的方法: 普通方法&#xff1a…

Vue3实现动态菜单功能

文章目录 0.效果演示1.搭建Vue3项目1.1 vite 脚手架创建 Vue3 项目1.2 设置文件别名1.3 安装配置 element-plus1.4 安装配置路由2.登录页面3.后台管理页面3.1 搭建后台框架3.2 左侧菜单栏3.3 header 用户信息3.4 主要内容3.5 footer4.配置静态路由5.记录激活菜单5.1 el-menu 绑…

yub‘s Algorithmic Adventures_Day3

yub’s Algorithmic Adventures_Day3 有序数组的平方 link:977. 有序数组的平方 - 力扣(LeetCode) 非递减顺序 一个数列中的元素从左到右依次不减,或者说不降序排列. 比如:1233445,12345. 思路分析 如果…

二分查找算法专题(1)

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏: 优选算法专题 目录 二分查找算法的介绍 704. 二分查找 34. 在排序数组中查找元素的第一个和 最后一个位置 35. 搜索插入位置 69. x的平…

Java网络通信—UDP

0.小记 1.udp通信不需要建立socket管道,一边只管发,一边只管收 2.客户端:将数据(byte)打包成包裹(DatagramPacket),写上地址(IP端口),通过快递站&…

【网络安全】Cookie与ID未强绑定导致账户接管

未经许可,不得转载。 文章目录 前言正文前言 DigiLocker 是一项在线服务,旨在为公民提供一个安全的数字平台,用于存储和访问重要的文档,如 Aadhaar 卡、PAN 卡和成绩单等。DigiLocker 通过多因素身份验证(MFA)来保护用户账户安全,通常包括 6 位数的安全 PIN 和一次性密…

大数据开发--1.2 Linux介绍及虚拟机网络配置

目录 一. 计算机入门知识介绍 软件和硬件的概述 硬件 软件 操作系统概述 简单介绍 常见的系统操作 学习Linux系统 二. Linux系统介绍 简单介绍 发行版介绍 常用的发行版 三. Linux系统的安装和体验 Linux系统的安装 介绍 虚拟机原理 常见的虚拟机软件 体验Li…

[Linux] Linux 的进程如何调度——Linux的 O(1)进程调度算法

标题:[Linux] Linux 的进程如何调度——优先级与进程调度 个人主页水墨不写bug 目录 一、前言 二、将要出现的概念 1.进程调度队列 2.位图 3.进程的优先级 三、Linux进程的调度过程 1.活动队列(*active指向的队列) 2.过期队列&#…

openKylin--安装 .net6.0

编辑profile文件 cd .. //切换到根目录 cd /etc //切换到etc目录 vim profile //b编辑profile文件 1. 按→键移动到文件末尾 2. 按Insert键进入编辑模式 3. 按Enter另起一行开始编辑 export DOTNET_ROOT/home/dotnetexport PATH$PATH:/home/dotnet 可以通过右键--粘贴 的…

模拟实战数据落地:MSsql通过存储过程获得销售数据视图

话不多说 目标需求:通过传递参数(查询条件及查询时间)调用存储过程获得销售数据视图,并且在视图中有时间字段供后续引用,实现数据对接获取任务 最终结果如图: 实现以上结果步骤如下: 1)建立users表和orders表分别代表用户及订单,其中订单中用户id与用户表中用户id关联,并随机…

LLM - 使用 vLLM 部署 Qwen2-VL 多模态大模型 (配置 FlashAttention) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142528967 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 vLLM 用于 大语言模型(LLM) 的推理和服务,具有多项优化技术,包括先进…

VMware ESXi Centos7网卡名称 ens192 变更eth0

1.在 /etc/sysconfig/network-scirpts/ 文件夹下 创建一个ifcfg-eth0的文件, 最简单的方式是 mv ifcfg-ens192 ifcfg-eth0 然后 vi ifcfg-eth0 把DEVICE改成 DEVICEeth0 wq! 保存 2. vi /etc/sysconfig/grub # 在位置添加 net.ifnames0 biosdevname0 参数 完…

java基础 day1

学习视频链接 人机交互的小故事 微软和乔布斯借鉴了施乐实现了如今的图形化界面 图形化界面对于用户来说,操作更加容易上手,但是也存在一些问题。使用图形化界面需要加载许多图片,所以消耗内存;此外运行的速度没有命令行快 Wi…

【iOS】计算器的仿写

计算器 文章目录 计算器前言简单的四则运算UI界面事件的逻辑小结 前言 笔者应组内要求,简单实现了一个可以完成简单四则运算的计算器程序。UI界面则是通过最近学习的Masonry库来实现的,而简单的四则运算内容则是通过栈来实现一个简单的四则运算。 简单…

QSqlDatabase在多线程中的使用

Qt中多线程使用数据库_qt数据库管理类支持多数据库,多线程-CSDN博客 1. 代码&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPushButton> #include <QSqlDatabase> #include <QSqlQuery> #include <QSqlError>…

【SpringBoot详细教程】-08-MybatisPlus详细教程以及SpringBoot整合Mybatis-plus【持续更新】

目录 🌲 MyBatis Plus 简介 🌾入门案例 🌾 MP 简介 🌲 MP 的CRUD 🌾 新增 🌾 删除 🌾 修改在进行 🌾 根据ID查询 🌾 查询所有 🌲 分页功能 🌾 设置分页参数 🌾 设置分页拦截器 🌲 优化启动 🌾 取消mbatisPlusBanner 🌾 取消Sprin…

L0-Linux-关卡材料提交

SSH全称Secure Shell&#xff0c;中文翻译为安全外壳&#xff0c;它是一种网络安全协议&#xff0c;通过加密和认证机制实现安全的访问和文件传输等业务。SSH 协议通过对网络数据进行加密和验证&#xff0c;在不安全的网络环境中提供了安全的网络服务。 SSH 是&#xff08;C/S…

大学学校用电安全远程监测预警系统

1.概述&#xff1a; 该系统是基于移动互联网、云计算技术&#xff0c;通过物联网传感终端&#xff0c;将办公建筑、学校、医院、工厂、体育场馆、宾馆、福利院等人员密集场所的电气安全数据&#xff0c;实时传输至安全用申管理服务器&#xff0c;为用户提供不间断的数据跟踪&a…