matlab碳交易机制下考虑需求响应的综合能源系统优化运行

目录

1 主要内容

架构模型:

需求响应模型:

目标函数:

对比算例设计:

2 部分程序

3 程序结果

4 下载链接


主要内容

该程序复现文献《碳交易机制下考虑需求响应的综合能源系统优化运行》,解决碳交易机制下考虑需求响应的综合能源系统优化运行问题,根据负荷响应特性将需求响应分为价格型和替代型 2 类, 分别建立了基于价格弹性矩阵的价格型需求响应模型,及考虑用能侧电能和热能相互转换的替代型需求响应模型; 其次, 采用基准线法为系统无偿分配碳排放配额,并考虑燃气轮机和燃气锅炉的实际碳排放量,构建一种面向综合能源系统的碳交易机制; 最后,以购能成本、碳交易成本及运维成本之和最小为目标函数,建立综合能源系统低碳优化运行模型,并通过 4 类典型场景对所提模型的有效性进行了验证。程序采用matlab+yalmip(cplex作为求解器)求解。

架构模型:

在该系统中,电能和气能分别由上级电网、气网供 应,从上级气网购气用来供给热电 联产装置( combined heat and power,CHP) 和燃气锅炉( gas boiler,GB) ,剩余电能可出售给上级电网; 能量耦合设备有 CHP、热泵( heat pump,HP) 和 GB,能实现电热能 量 双 向 流 动; CHP 由 燃 气 轮 机 ( gas turbine,GT) 、余热锅炉( waste heat boiler,WHB) 和基于有机朗肯循环( organic Rankine cycle,ORC) 的低温余热发电装置组成,运行方式为热电解耦,该运行方式能适应系统不同运行工况; HP 和 GB 消纳风电并承担部分热负荷。引入 DR 可以平抑负荷曲线波动,实现电热的交互耦合、削峰填谷并降低运行成本。

需求响应模型:

本程序将价格型需求响应和替代型需求响应均进行了实现。

目标函数:

对比算例设计:

程序采用四种对比算例,分别是仅包括碳交易、碳交易+需求响应、仅包括需求响应、均不包括四种情况。

部分程序

%% 碳交易机制下考虑需求响应的综合能源系统优化运行——魏震波
%场景 2: 碳交易机制下考虑需求响应
​
clc;clear;close all;% 程序初始化
%% 读取数据
shuju=xlsread('carbon+DR数据.xlsx'); %把一天划分为24小时
load_e=shuju(2,:); %初始电负荷
load_h=shuju(3,:); %初始热负荷
P_PV=shuju(4,:);    %光电预测
P_WT=shuju(5,:);    %风电预测
pe_b=shuju(6,:); %需求响应前电价
pe_a=shuju(7,:); %需求响应电价
ph_b=shuju(8,:); %需求响应前热价
ph_a=shuju(9,:); %需求响应热价
​
%% 需求侧定义变量
Z=zeros(24,24); %需求弹性矩阵
e_W1=0.5;e_W2=0.3;e_W3=0.15;e_W4=0.05;%约束:固定、可转移、可消减、可替代负荷占比50%,30%,15%,5% %这里进行4. 2. 2 需求响应灵敏度分析
h_W1=0.5;h_W2=0.2;h_W3=0.2;h_W4=0.1;%约束:固定、可转移、可消减、可替代负荷占比50%,30%,15%,5%  %这里进行4. 2. 2 需求响应灵敏度分析
Psl_e=zeros(1,24);%转移电负荷量
Pcl_e=zeros(1,24);%消减电负荷量
Prl_e=zeros(1,24);%电负荷被替代量
Psl_h=zeros(1,24);%转移热负荷量
Pcl_h=zeros(1,24);%消减热负荷量
Prl_h=zeros(1,24);%热负荷被替代量
P2H=1.83; %电转热系数
OP_load_e=zeros(1,24);%优化后的电负荷
OP_load_h=zeros(1,24);%优化后的热负荷
%% IES电网交互电价
price_buy_grid=shuju(7,:); %向电网购电价
price_sell_grid=shuju(10,:); %向电网售电价
%% 供应测定义机组变量
%CHP
P_GT=sdpvar(1,24,'full');%燃气轮机输出功率
e_GT=0.3;%燃气轮机供电效率
h_GT=0.4;%燃气轮机供热效率
P_WHB=sdpvar(1,24,'full');%余热锅炉输出功率
r_WHB=0.80;%热回收效率
P_ORC=sdpvar(1,24,'full');%ORC输出功率
r_ORC=0.80;%ORC效率
​
P_GB=sdpvar(1,24,'full');%燃气锅炉输出功率
h_GB=0.9;%燃气锅炉供热效率
​
P_HP=sdpvar(1,24,'full');%热泵输入功率
COP_HP=4.4;%电制冷机冷系数
​B_grid=sdpvar(1,24,'full');%购电电量S_grid=sdpvar(1,24,'full');%售电电量B_grid_sign=binvar(1,24,'full'); %购电标志
​
ES_char=sdpvar(1,24,'full');%储电系统充电
ES_dischar=sdpvar(1,24,'full');%储电系统放电
ES_char_sign=binvar(1,24,'full');%储电系统充电标志
ES_max=400; ES_loss=0.01;ES_c_char=0.95;ES_c_discharge=0.9;%电储能最大容量;自损系数;充、放能效率
​
HS_char=sdpvar(1,24,'full');%储热系统充热
HS_dischar=sdpvar(1,24,'full');%储热系统放热
HS_char_sign=binvar(1,24,'full'); %储热系统充热标志
HS_max=400; HS_loss=0.01;HS_c_char=0.95;HS_c_discharge=0.9;%热储能最大容量;自损系数;充、放能效率;原文0.8
%% DR-需求侧响应优化
Z_e=ElasticityMatrix(pe_a); %电价需求弹性矩阵
Z_e_CL=diag(diag(Z_e)); %消减电负荷弹性矩阵,对角阵
Z_e_SL=Z_e-Z_e_CL; %转移电负荷弹性矩阵
​
Z_h=ElasticityMatrix(ph_a); %热价需求弹性矩阵
Z_h_CL=diag(diag(Z_h)); %消减热负荷弹性矩阵,对角阵
Z_h_SL=Z_h-Z_h_CL; %转移热负荷弹性矩阵
​
%价格型需求响应
[Psl_e,Pcl_e]=IBDR(Z_e_SL,Z_e_CL,load_e,pe_a,pe_b,e_W2,e_W3);
[Psl_h,Pcl_h]=IBDR(Z_h_SL,Z_h_CL,load_h,ph_a,ph_b,h_W2,h_W3);
%替代型需求响应
[Prl_e,Prl_h]=RBDR(pe_a,ph_a,e_W4,h_W4);
​
OP_load_e=load_e+Psl_e+Pcl_e-Prl_e+Prl_h/P2H;%优化后的电负荷
OP_load_h=load_h+Psl_h+Pcl_h-Prl_h+Prl_e*P2H;%优化后的热负荷
%%  IES供应侧储能约束     
ES_start=80;
HS_start=50;  %电储能和热储能的初始能量
for i=1:24ES(1,i)=ES_start+ES_char(1,i)*ES_c_char-ES_dischar(1,i)/ES_c_discharge; %储电初始容量约束ES_start=ES(1,i);
end
for i=1:23ES(1,i+1)= ES(1,i)*(1-ES_loss)+ES_char(1,i)*ES_c_char-ES_dischar(1,i)/ES_c_discharge; %储电容量约束
end
ES_start=ES(1,24);
​
for i=1:24EH(1,i)=HS_start+HS_char(1,i)*HS_c_char-HS_dischar(1,i)/HS_c_discharge; %储热初始容量约束HS_start=EH(1,i);
end
for i=1:23EH(1,i+1)= EH(1,i)*(1-HS_loss)+HS_char(1,i)*HS_c_char-HS_dischar(1,i)/HS_c_discharge; %储热容量约束
end
HS_start=EH(1,24);
​
%% IES供应侧优化
% 约束条件
C=[];
%%电储能设备运行约束for i=1:24  %运行约束C=[C,0<=ES_char(1,i)<=250*ES_char_sign(1,i)];C=[C,0<=ES_dischar(1,i)<=250*(1-ES_char_sign(1,i))];endfor i=1:24 %余量约束C=[C,0<=ES(1,i)<=400];end%热储能设备运行约束for i=1:24  %运行约束C=[C,0<=HS_char(1,i)<=250*HS_char_sign(1,i)];C=[C,0<=HS_dischar(1,i)<=250*(1-HS_char_sign(1,i))];endfor i=1:24 %余量约束C=[C,0<=EH(1,i)<=400];enda=0.5; %这里进行4. 2. 3 GT 产热分配比例的影响
%各个机组约束
for i=1:24   C = [C,0<=P_GT(i)<=4000];%燃气轮机上下限约束C = [C,0<=P_GB(i)<=1000];%燃气锅炉上下限约束 C = [C,0<=P_HP(i)<400];%热泵上下限约束C = [C,0<=P_ORC(i)<=400];%ORC上下限约束C = [C,P_GT(i)*h_GT*r_WHB*a<=P_WHB(i)<=P_GT(i)*h_GT*r_WHB*a];%余热回收分配公式,a为分配系数C = [C,P_GT(i)*h_GT*r_ORC*(1-a)<= P_ORC(i)<=P_GT(i)*h_GT*r_ORC*(1-a)];C = [C, 0<= B_grid(i)<= B_grid_sign*1500];C = [C, 0<= S_grid(i)<=(1-B_grid_sign)*1500]; %外部电网联络线约束
end

程序结果

上述图为case2的出图结果,其他场景出图类型一致,不再重复粘贴​。

4 下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/441210.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

工业缺陷检测深度学习方法

工业缺陷检测深度学习方法 基于深度学习的工业缺陷检测方法可以降低传统人工质检的成本, 提升检测的准确性与效率, 因而在智能制造中扮演重要角色, 并逐渐成为计算机视觉领域新兴的研究热点之一. 其被广泛地应用 于无人质检、智能巡检、质量控制等各种生产与运维场景中. 本综述…

Spring Boot驱动的足球青训俱乐部管理解决方案

1 绪论 1.1研究背景 随着科技的发展&#xff0c;计算机的应用&#xff0c;人们的生活方方面面都和互联网密不可分。计算机的普及使得人们的生活更加方便快捷&#xff0c;网络也遍及到我们生活的每个角落&#xff0c;二十一世纪信息化时代的到来&#xff0c;随着社会科技的不断…

241007深度学习之LeNet

目录 1.LeNet介绍2.组成3.代码实现 1.LeNet介绍 LeNet是最早发布的卷积神经网络之一,他是由AT&T贝尔实验室的研究员Yann LeCun在1989年提出的(并且以其命名),目的是识别图像中手写数字.当时,Yann LeCun发表了第一篇通过反向传播成功训练卷积神经网络的研究论文,这项工作代…

关于CSS Grid布局

关于CSS Grid布局 实际效果参考 参考代码 <template><view class"baseInfo"><up-image class"cover" height"160rpx" width"120rpx" :src"bookInfo.cover"><template #error><view style"…

基于Zynq SDIO WiFi移植二(支持2.4/5G)

1 SDIO设备识别 经过编译&#xff0c;将移植好的uboot、kernel、rootFS、ramdisk等烧录到Flash中&#xff0c;上电启动&#xff0c;在log中&#xff0c;可看到sdio设备 [ 1.747059] mmc1: queuing unknown CIS tuple 0x01 (3 bytes) [ 1.761842] mmc1: queuing unknown…

卫星测绘AI技术-立哥尖端科研

分布式微波干涉测绘卫星是以多颗满足一定编队构形的卫星为平台&#xff0c;以合成孔径雷达 和高精度星间相对状态测量设备等为有效载荷&#xff0c;具备全天时、全天候获取雷达干涉影像数 据&#xff0c;快速测制全球数字表面模型、数字雷达正射影像等测绘产品能力的卫星系统…

点可云ERP进销存V8版本——其他支出单使用说明

其他支出单用于记录除采购内容外其支出资金&#xff0c;如&#xff1a;人工运输费、安装维修服务、差旅报销等。新增保存之后&#xff0c;对应资金账户将减少金额额度&#xff0c;并做存储记录&#xff0c;可在现金银行报表中体现。 新增操作 接下来我们讲解新增单据步骤。如上…

PHP 基础语法详解

PHP 基础语法详解 PHP&#xff08;全称&#xff1a;PHP: Hypertext Preprocessor&#xff09;是一种广泛应用的服务器端脚本语言&#xff0c;特别适用于 Web 开发。它易于学习&#xff0c;且能够快速构建动态网站。本篇博客将详细介绍 PHP 的基础语法&#xff0c;帮助初学者理…

[OS] 编译 Linux 内核

编译 Linux 内核&#xff1a;详细教程与 Kthreads 入门结合 我们将学习如何编译 Linux 内核&#xff0c;同时结合 Kthreads 的知识来理解各个步骤的目的。对于虚拟环境下的开发环境配置&#xff0c;本文将为你提供逐步指导。 1. 下载内核源代码 首先&#xff0c;我们需要从官…

第 1 章 MyBatis快速入门

1.1 ORM简介 ORM&#xff08;Object Relational Mapping&#xff0c;对象——关系映射&#xff09;框架的主要功能是根据映射配置文件&#xff0c;完成数据在对象模型与关系模型之间的映射&#xff0c;同时出屏蔽了连接数据库、创建 Statement 对象、执行 SQL、读取 ResultSet…

(Linux驱动学习 - 8).信号异步通知

一.异步通知简介 1.信号简介 信号类似于我们硬件上使用的“中断”&#xff0c;只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟&#xff0c;驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了&#xff0c;应用程序获取到信号以后就可以从驱动设备中…

【技术】Jaskson的序列化与反序列化

文章目录 概念解释1.Jasksona.JSONJSON 的基本特点JSON 的基本结构JSON 示例 b.ObjectMapper类 2.序列化与反序列化a.序列化对象序列化集合序列化ListSetMap b.反序列化反序列化单个对象反序列化集合对象 概念解释 1.Jaskson Jackson 是一个用于处理 JSON 数据的 Java 库,所以…

k8s实战-1

k8s实战-1 一、资源创建方式1.命令行2.yaml 二、命名空间三、Pod总结 一、资源创建方式 1.命令行 就是直接通过命令的方式创建&#xff0c;比如我要创建namespace&#xff0c; kubectl create namespace hello删除&#xff1a; kubectl delete -f hello2.yaml 简单来说&am…

用java编写飞机大战

游戏界面使用JFrame和JPanel构建。背景图通过BG类绘制。英雄机和敌机在界面上显示并移动。子弹从英雄机发射并在屏幕上移动。游戏有四种状态&#xff1a;READY、RUNNING、PAUSE、GAMEOVER。状态通过鼠标点击进行切换&#xff1a;点击开始游戏&#xff08;从READY变为RUNNING&am…

无人机单目+激光+IMU复杂弧形(隧道)退化场景SLAM技术详解

无人机在复杂弧形&#xff08;如隧道&#xff09;退化场景中的SLAM&#xff08;同时定位与地图构建&#xff09;技术&#xff0c;结合单目相机、激光雷达&#xff08;LiDAR&#xff09;和惯性测量单元&#xff08;IMU&#xff09;时&#xff0c;能够显著提升定位与建图的准确性…

在忘记密码的情况下重新访问手机?5种忘记密码解锁Android手机的方法

无需密码即可访问Android手机。 即使你忘记了密码&#xff0c;你也可以解锁你的Android手机&#xff0c;但你通常需要将手机恢复出厂设置。 您可以通过执行出厂恢复或使用“查找我的设备”网站解锁大多数Android手机。 如果你不再有密码&#xff0c;这里有五种解锁安卓手机的…

E37.【C语言】动态内存管理练习题

目录 1. 答案速查 分析 源代码分析 反汇编代码分析(底层) 2. 答案速查 分析 3. 答案速查 分析 VS逐步调试 1. 求下列代码的执行结果 #include <stdio.h> char* GetMemory(void) {char p[] "hello world";return p; }void Test(void) {char* str…

分层解耦-03.IOCDI-入门

一. IOC&DI入门 二.控制转移注解Component 因为dao和service接口的实现类对象需要传入到service和controller中&#xff0c;因此需要将dao和service代码加上Component注解&#xff0c;使之实现控制反转&#xff0c;将实现类对象交给IOC容器管理&#xff0c;成为IOC容器中…

Web安全 - 阶段性总结回顾_风险评估

文章目录 OWASP 2023 TOP 10用户数据的威胁评估密码盗窃XSS 漏洞SQL 注入CSRF 漏洞 资产数据的威胁评估SSRF 漏洞反序列化漏洞插件漏洞后门 认证和授权的安全防护检测与过滤加强认证补丁管理 进一步防护手段最小权限原则WAFIDS 小结 OWASP 2023 TOP 10 OWASP Top 10 概述 OWASP…

数据结构与算法——动态规划算法简析

1.初步了解动态规划 由于本篇博客属于动态规划的初阶学习&#xff0c;所以大多都是简单的表示&#xff0c;更深层次的学术用语会在之后深度学习动态规划之后出现&#xff0c;本文主要是带各位了解一下动态规划的大致框架 1.1状态表示 通常的我们会开辟一个dp数组来存储需要表示…