k8s网络通信

 k8s通信整体架构

k8s通过CNI接口接入其他插件来实现网络通讯。目前比较流行的插件有flannel,calico等
CNI插件存放位置:# cat /etc/cni/net.d/10-flannel.conflist
 插件使用的解决方案如下
虚拟网桥,虚拟网卡,多个容器共用一个虚拟网卡进行通信。
多路复用:MacVLAN,多个容器共用一个物理网卡进行通信。
硬件交换:SR-LOV,一个物理网卡可以虚拟出多个接口,这个性能最好。
 容器间通信:
同一个pod内的多个容器间的通信,通过lo即可实现pod之间的通信
同一节点的pod之间通过cni网桥转发数据包。
不同节点的pod之间的通信需要网络插件支持
 pod和service通信: 通过iptables或ipvs实现通信,ipvs取代不了iptables,因为ipvs只能做负载均衡,而做不了nat转换
 pod和外网通信:iptables的MASQUERADE
Service与集群外部客户端的通信;(ingress、nodeport、loadbalancer)

flannel网络插件

插件组成

flannel跨主机通信原理

当容器发送IP包,通过veth pair 发往cni网桥,再路由到本机的flannel.1设备进行处理。

VTEP设备之间通过二层数据帧进行通信,源VTEP设备收到原始IP包后,在上面加上一个目的MAC地址,封装成一个内部数据帧,发送给目的VTEP设备。

内部数据桢,并不能在宿主机的二层网络传输,Linux内核还需要把它进一步封装成为宿主机的一个普通的数据帧,承载着内部数据帧通过宿主机的eth0进行传输。

 Linux会在内部数据帧前面,加上一个VXLAN头,VXLAN头里有一个重要的标志叫VNI,它是VTEP识别某个数据桢是不是应该归自己处理的重要标识。

flannel.1设备只知道另一端flannel.1设备的MAC地址,却不知道对应的宿主机地址是什么。在linux内核里面,网络设备进行转发的依据,来自FDB的转发数据库,这个flannel.1网桥对应的FDB信息,是由flanneld进程维护的

linux内核在IP包前面再加上二层数据帧头,把目标节点的MAC地址填进去,MAC地址从宿主机的ARP表获取。

 此时flannel.1设备就可以把这个数据帧从eth0发出去,再经过宿主机网络来到目标节点的eth0设备。目标主机内核网络栈会发现这个数据帧有VXLAN Header,并且VNI为1,Linux内核会对它进行拆包,拿到内部数据帧,根据VNI的值,交给本机flannel.1设备处理,flannel.1拆包,根据路由表发往cni网桥,最后到达目标容器。

#默认网络通信路由

桥接转发数据库

arp列表

flannel支持的后端模式

更改flannel的默认模式

kubectl -n kube-flannel edit cm kube-flannel-cfg

重启pod

kubectl -n kube-flannel delete pod --all

calico网络插件

官网:

https://docs.projectcalico.org/getting-started/kubernetes/self-managed-onprem/onpremises

简介

纯三层的转发,中间没有任何的NAT和overlay,转发效率最好。
Calico 仅依赖三层路由可达。Calico 较少的依赖性使它能适配所有 VM、Container、白盒或者混合环境场景。

calico网络架构

Felix:监听ECTD中心的存储获取事件,用户创建pod后,Felix负责将其网卡、IP、MAC都设置好,然后在内核的路由表里面写一条,注明这个IP应该到这张网卡。同样如果用户制定了隔离策略,Felix同样会将该策略创建到ACL中,以实现隔离。
BIRD:一个标准的路由程序,它会从内核里面获取哪一些IP的路由发生了变化,然后通过标准BGP的路由协议扩散到整个其他的宿主机上,让外界都知道这个IP在这里,路由的时候到这里

部署

删除flannel插件

kubectl delete  -f kube-flannel.yml

删除所有节点上flannel配置文件,避免冲突

rm -rf /etc/cni/net.d/10-flannel.conflist

下载部署文件

下载镜像上传至仓库:

更改yml设置

vim calico.yaml

测试

k8s调度

调度在Kubernetes中的作用

调度是指将未调度的Pod自动分配到集群中的节点的过程
调度器通过 kubernetes 的 watch 机制来发现集群中新创建且尚未被调度到 Node 上的 Pod
调度器会将发现的每一个未调度的 Pod 调度到一个合适的 Node 上来运

调度原理:

创建Pod
用户通过Kubernetes API创建Pod对象,并在其中指定Pod的资源需求、容器镜像等信息。
调度器监视Pod
Kubernetes调度器监视集群中的未调度Pod对象,并为其选择最佳的节点。
选择节点
调度器通过算法选择最佳的节点,并将Pod绑定到该节点上。调度器选择节点的依据包括节点的资源使用情况、Pod的资源需求、亲和性和反亲和性等。
绑定Pod到节点
调度器将Pod和节点之间的绑定信息保存在etcd数据库中,以便节点可以获取Pod的调度信息。
节点启动Pod
节点定期检查etcd数据库中的Pod调度信息,并启动相应的Pod。如果节点故障或资源不足,调度器会重新调度Pod,并将其绑定到其他节点上运行。

调度器种类

默认调度器(Default Scheduler):
 是Kubernetes中的默认调度器,负责对新创建的Pod进行调度,并将Pod调度到合适的节点上。
自定义调度器(Custom Scheduler):
是一种自定义的调度器实现,可以根据实际需求来定义调度策略和规则,以实现更灵活和多样化的调度功能。
扩展调度器(Extended Scheduler):
 是一种支持调度器扩展器的调度器实现,可以通过调度器扩展器来添加自定义的调度规则和策略,以实现更灵活和多样化的调度功能。
 kube-scheduler是kubernetes中的默认调度器,在kubernetes运行后会自动在控制节点运行

常用调度方法

 nodename

nodeName 是节点选择约束的最简单方法,但一般不推荐
如果 nodeName 在 PodSpec 中指定了,则它优先于其他的节点选择方法
 使用 nodeName 来选择节点的一些限制
 如果指定的节点不存在。
如果指定的节点没有资源来容纳 pod,则pod 调度失败。
云环境中的节点名称并非总是可预测或稳定的 

 示例

建立pod文件

设置调度

kubectl run  testpod  --image myapp:v1 --dry-run=client -o yaml > pod1.yml
vim pod1.yml

建立pod

注意:找不到节点pod时会出现pending,优先级最高,其他调度方式无效

Nodeselector(通过标签控制节点)

nodeSelector 是节点选择约束的最简单推荐形式

 给选择的节点添加标签:
 

[root@k8s-master scheduler]#  kubectl label nodes k8s-node1.org  lab=lee

查看节点标签

设定节点标签

[root@k8s-master scheduler]#  kubectl label nodes k8s-node1.org  lab=lee

调度设置

vim pod2.yml
apiVersion: v1
kind: Pod
metadata:labels:run: testpodname: testpod
spec:nodeSelector:lab: timingleecontainers:- image: myapp:v1name: testpod

 affinity(亲和性)

官方文档 :

https://kubernetes.io/zh/docs/concepts/scheduling-eviction/assign-pod-node

亲和与反亲和

nodeSelector 提供了一种非常简单的方法来将 pod 约束到具有特定标签的节点上。亲和/反亲和功能极大地扩展了你可以表达约束的类型。
 使用节点上的 pod 的标签来约束,而不是使用节点本身的标签,来允许哪些 pod 可以或者不可以被放置在一起。

nodeAffinity节点亲和

那个节点服务指定条件就在那个节点运行
requiredDuringSchedulingIgnoredDuringExecution   必须满足,但不会影响已经调度
 preferredDuringSchedulingIgnoredDuringExecution 倾向满足,在无法满足情况下也会调度pod
 IgnoreDuringExecution 表示如果在Pod运行期间Node的标签发生变化,导致亲和性策略不能满足,则继续运行当前的Pod。
nodeaffinity还支持多种规则匹配条件的配置

nodeAffinity示例

vim pod3.yml
apiVersion: v1
kind: Pod
metadata:name: node-affinity
spec:containers:- name: nginximage: nginxaffinity:nodeAffinity:requiredDuringSchedulingIgnoredDuringExecution:nodeSelectorTerms:- matchExpressions:- key: diskoperator: In | NotIn			#两个结果相反values:- ssd

Podaffinity(pod的亲和)

那个节点有符合条件的POD就在那个节点运行
podAffinity 主要解决POD可以和哪些POD部署在同一个节点中的问题
 podAntiAffinity主要解决POD不能和哪些POD部署在同一个节点中的问题。它们处理的是Kubernetes集群内部POD和POD之间的关系。
 Pod 间亲和与反亲和在与更高级别的集合(例如 ReplicaSets,StatefulSets,Deployments 等)一起使用时,
 Pod 间亲和与反亲和需要大量的处理,这可能会显著减慢大规模集群中的调度。
 

Podaffinity示例

apiVersion: apps/v1
kind: Deployment
metadata:name: busyboxplus-deploymentlabels:app: busyboxplus
spec:replicas: 3selector:matchLabels:app: busyboxplustemplate:metadata:labels:app:busyboxplusspec:containers:- name: busyboxplusimage: busyboxplusaffinity:podAffinity:requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchExpressions:- key: appoperator: Invalues:- busyboxplustopologyKey: "kubernetes.io/hostname"
~                               

Podantiaffinity(pod反亲和)

apiVersion: apps/v1
kind: Deployment
metadata:name: nginx-deploymentlabels:app: nginx
spec:replicas: 3selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginxaffinity:podAntiAffinity:		#反亲和requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchExpressions:- key: appoperator: Invalues:- nginxtopologyKey: "kubernetes.io/hostname"

 Taints(污点模式,禁止调度)

Taints(污点)是Node的一个属性,设置了Taints后,默认Kubernetes是不会将Pod调度到这个Node上
 Kubernetes如果为Pod设置Tolerations(容忍),只要Pod能够容忍Node上的污点,那么Kubernetes就会忽略Node上的污点,就能够(不是必须)把Pod调度过去
可以使用命令 kubectl taint 给节点增加一个 taint:


$ kubectl taint nodes <nodename> key=string:effect   #命令执行方法
$ kubectl taint nodes node1 key=value:NoSchedule    #创建
$ kubectl describe nodes server1 | grep Taints        #查询
$ kubectl taint nodes node1 key-                  #删除
 

其中[effect] 可取值:

Taints示例

[root@k8s-master scheduler]# vim example6.yml
apiVersion: apps/v1
kind: Deployment
metadata:labels:app: webname: web
spec:replicas: 2selector:matchLabels:app: webtemplate:metadata:labels:app: webspec:containers:- image: nginxname: nginx

设定污点为NoSchedule

[root@k8s-master scheduler]# kubectl taint node k8s-node1.org name=lee:NoSchedule
node/k8s-node1.org tainted
[root@k8s-master scheduler]# kubectl describe nodes k8s-node1.org | grep Tain
Taints:             name=lee:NoSchedule
删除污点

tolerations(污点容忍)

tolerations中定义的key、value、effect,要与node上设置的taint保持一直:
 如果 operator 是 Equal ,则key与value之间的关系必须相等。
   如果 operator 是 Exists ,value可以省略
如果不指定operator属性,则默认值为Equal。
还有两个特殊值:
当不指定key,再配合Exists 就能匹配所有的key与value ,可以容忍所有污点。
当不指定effect ,则匹配所有的effect

污点容忍示例:
设定节点污点

vim example7.yml
apiVersion: apps/v1
kind: Deployment
metadata:labels:app: webname: web
spec:replicas: 6selector:matchLabels:app: webtemplate:metadata:labels:app: webspec:containers:- image: nginxname: nginxtolerations:				#容忍所有污点- operator: Existstolerations:				#容忍effect为Noschedule的污点- operator: Existseffect: NoScheduletolerations:				#容忍指定kv的NoSchedule污点- key: nodetypevalue: badeffect: NoSchedule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444052.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模拟实现消息队列(基于SpringBoot实现)

项目代码 提要&#xff1a;此处的消息队列是仿照RabbitMQ实现&#xff08;参数之类的&#xff09;&#xff0c;实现一些基本的操作&#xff1a;创建/销毁交互机&#xff08;exchangeDeclare&#xff0c;exchangeDelete&#xff09;&#xff0c;队列&#xff08;queueDeclare&a…

<Rust>iced库(0.13.1)学习之部件(三十二):使用markdown部件来编辑md文档

前言 本专栏是学习Rust的GUI库iced的合集,将介绍iced涉及的各个小部件分别介绍,最后会汇总为一个总的程序。 iced是RustGUI中比较强大的一个,目前处于发展中(即版本可能会改变),本专栏基于版本0.12.1. 注:新版本已更新为0.13 概述 这是本专栏的第三十二篇,主要介绍一…

zabbix7.0配置中文界面

Zabbix 是一个广泛使用的开源监控解决方案&#xff0c;支持多种语言界面。本文将详细介绍如何配置 Zabbix 以使用中文界面&#xff0c;从而提高用户体验和可读性。 1. 环境准备 在开始配置之前&#xff0c;请确保你已经安装并运行了 Zabbix 服务器、前端和数据库。如果你还没有…

WPF|依赖属性SetCurrentValue方法不会使绑定失效, SetValue方法会使绑定失效?是真的吗?

引言 最近因为一个触发器设置的结果总是不起效果的原因&#xff0c;进一步去了解[依赖属性的优先级](Dependency property value precedence - WPF .NET | Microsoft Learn)。在学习这个的过程中发现对SetCurrentValue一直以来的谬误。 在WPF中依赖属性Dependency property的…

从0到1:小区业主决策投票小程序开发笔记

可研 小区业主决策投票小程序&#xff1a; 便于业主参与社区事务的决策&#xff0c;通过网络投票的形式&#xff0c;大大节省了业委会和业主时间&#xff0c;也提高了投票率。其主要功能&#xff1a;通过身份证、业主证或其他方式确认用户身份&#xff1b;小区管理人员或业委会…

Java 17流程控制语句3w字解读

本笔记来自尚硅谷教育-康师傅&#xff0c;学习教程&#xff1a;https://www.bilibili.com/video/BV1PY411e7J6/?spm_id_from333.337.search-card.all.click 本章专题与脉络 第1阶段&#xff1a;Java基本语法-第03章 流程控制语句是用来控制程序中各语句执行顺序的语句&#xf…

5个免费ppt模板网站推荐!轻松搞定职场ppt制作!

每次过完小长假&#xff0c;可以明显地感觉到&#xff0c;2024这一年很快又要结束了&#xff0c;不知此刻的你有何感想呢&#xff1f;是满载而归&#xff0c;还是准备着手制作年终总结ppt或年度汇报ppt呢&#xff1f; 每当说到制作ppt&#xff0c;很多人的第一反应&#xff0c…

threejs-基础材质设置

一、介绍 主要内容&#xff1a;基础材质(贴图、高光、透明、环境、光照、环境遮蔽贴图) 主要属性&#xff1a; side: three.DoubleSide, //设置双面 color: 0xffffff, //颜色 map: texture, //纹理 transparent: true, // 透明度 aoMap: aoTexture, //ao贴图 aoMapIntensity: 1…

YOLO11改进|注意力机制篇|引入局部注意力HaloAttention

目录 一、【HaloAttention】注意力机制1.1【HaloAttention】注意力介绍1.2【HaloAttention】核心代码 二、添加【HaloAttention】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4 三、yaml文件与运行3.1yaml文件3.2运行成功截图 一、【HaloAttention】注意力机制 1.1【HaloAttent…

使用FastAPI做人工智能后端服务器时,接口内的操作不是异步操作的解决方案

在做AI模型推理的接口时&#xff0c;这时候接口是非异步的&#xff0c;但是uvicorn运行FastAPI时就会出现阻塞所有请求。 这时候需要解决这个问题&#xff1a; api.py&#xff1a; import asyncio from fastapi import FastAPI from fastapi.responses import StreamingResp…

嵌入式开发:STM32 硬件 CRC 使用

测试平台&#xff1a;STM32G474系列 STM32硬件的CRC不占用MCU的资源&#xff0c;计算速度快。由于硬件CRC需要配置一些选项&#xff0c;配置不对就会导致计算结果错误&#xff0c;导致使用上没有软件计算CRC方便。但硬件CRC更快的速度在一些有时间资源要求的场合还是非…

从 Reno TCP 到 Scalable TCP,HighSpeed TCP

前文 Scalable TCP 如何优化长肥管道 介绍了 Scalable TCP&#xff0c;但联系另一个类似的算法 HighSpeed TCP(简称 HSTCP)&#xff0c;就会看到一个类似从 Reno TCP 经 BIC 到 CUBIC 的路线&#xff0c;但采用了不同的策略。 Reno TCP 经 BIC 到 CUBIC 路线的核心在于 “在长…

4反馈、LC、石英、RC振荡器

1什么是振荡器&#xff1f; 我们看看振荡器在无线通信中扮演什么角色&#xff1f; 1&#xff09;无线通信的波是指电磁波‌。 2‌&#xff09;电磁波的频率高于100KHz才能在空气中传播。‌ 3&#xff09;空气中的高频电磁波的相位和振幅可以排列组合包含信息。 4&#xff09;无…

DBMS-3.4 SQL(4)——存储过程和函数触发器

本文章的素材与知识来自李国良老师和王珊老师。 存储过程和函数 一.存储过程 1.语法 2.示例 &#xff08;1&#xff09; 使用DELIMITER更换终止符后用于编写存储过程语句后&#xff0c;在下次执行SQL语句时记得再使用DELIMITER将终止符再换回分号。 使用DELIMITER更换终止符…

Ubuntu 22.04.4 LTS更换下载源

方法1&#xff1a;使用图形界面更换下载源 1. 打开软件和更新应用 2. 在Ubuntu 软件标签中&#xff0c;点击“下载自”旁边的下拉菜单&#xff0c;选择“其他” 3. 点击“选择最佳服务器”来自动选择最快的服务器 4. 选择服务器 5. 确定并关闭窗口&#xff0c;系统会提示您重新…

ElasticSearch备考 -- Multi match

一、题目 索引task有3个字段a、b、c&#xff0c;写一个查询去匹配这三个字段为mom&#xff0c;其中b的字段评分比a、c字段大一倍&#xff0c;将他们的分数相加作为最后的总分数 二、思考 通过题目要求对多个字段进行匹配查询&#xff0c;可以考虑multi match、bool query操作。…

【C++第十八章】Map和Set

Map和Set map和set的介绍 容器分为两种&#xff0c;序列式容器和关联式容器&#xff0c;序列式容器因为底层是线性序列的数据结构&#xff0c;存储的是元素本身&#xff0c;而关联式容器中不单是为了存储数据&#xff0c;还要进行查找&#xff0c;所以存储的是键值对&#xff…

网络编程(17)——asio多线程模型IOThreadPool

十七、day17 之前我们介绍了IOServicePool的方式&#xff0c;一个IOServicePool开启n个线程和n个iocontext&#xff0c;每个线程内独立运行iocontext, 各个iocontext监听各自绑定的socket是否就绪&#xff0c;如果就绪就在各自线程里触发回调函数。为避免线程安全问题&#xf…

腾讯云SDK点播播放数据

点播播放质量监控提供点播播放全链路的数据统计、质量监控及可视化分析服务。支持实时数据上报、数据聚合、多维筛选和精细化定向分析&#xff0c;可帮助企业实时掌控大盘运营状况、了解用户习惯和行为特征&#xff0c;有效指导运营决策、驱动业务增长。 注意事项 点播播放质…

Python 工具库每日推荐 【Pandas】

文章目录 引言Python数据处理库的重要性今日推荐:Pandas工具库主要功能:使用场景:安装与配置快速上手示例代码代码解释实际应用案例案例:销售数据分析案例分析高级特性数据合并和连接时间序列处理数据透视表扩展阅读与资源优缺点分析优点:缺点:总结【 已更新完 TypeScrip…