息肉检测数据集 yolov5 yolov8适用于目标检测训练已经调整为yolo格式可直接训练yolo网络

 息肉检测数据集 yolov5 yolov8格式

息肉检测数据集介绍

数据集概述
  • 名称:息肉检测数据集(基于某公开的分割数据集调整)
  • 用途:适用于目标检测任务,特别是内窥镜图像中的息肉检测
  • 格式:YOLO格式(边界框坐标 + 类别ID)
  • 来源:改自某公开的分割数据集(如EDD2020等)
  • 适用模型:YOLOv5, YOLOv8
数据集特点
  • 多样性:包含多种类型的息肉,不同大小、形状和位置。
  • 高质量标注:每个图像都经过精确标注,提供边界框信息,适用于目标检测任务。
  • 临床相关性:数据来自真实的临床内窥镜检查,具有很高的实用价值。
  • 预处理:图像已经进行了标准化处理,并调整为YOLO格式,可以直接用于模型训练。

  1. 适用于目标检测训练
  2. 已经调整为yolo格式
  3. 可直接训练yolo网络

息肉检测是医学影像分析中的一个重要应用,它对于早期发现和诊断结肠癌等疾病具有重要意义。随着深度学习技术的发展,目标检测算法如YOLO(You Only Look Once)系列在医疗图像分析中得到了广泛应用。YOOLv5与YOLOv8作为该系列的成员,分别代表了不同发展阶段的技术特点,并且都可以用于训练息肉检测模型。

### YOLOv5 简介

YOLOv5是由Ultralytics公司基于PyTorch框架开发的一个开源项目。尽管名字暗示它是官方YOLO系列的一部分,但实际上YOLOv5并不是原始作者Joseph Redmon所创建的版本延续。不过,这并不妨碍其成为目前最受欢迎的目标检测库之一。YOLOv5拥有多个预设模型大小(S, M, L, X),能够适应不同的硬件环境。此外,它还提供了丰富的功能集,包括自动化的数据增强、易于使用的API以及快速的推理速度,非常适合于实际部署。

### YOLOv8 简介

截至2024年10月的信息,如果存在所谓的"YOLOv8",那么它可能是继YOLOv7之后的新一代改进版本或者是某些研究者或企业基于现有架构做出的重大升级。由于信息更新可能滞后,请根据最新资料确认是否有正式发布的YOLOv8版本及其具体特性。通常情况下,新的YOLO版本会在保持高精度的同时进一步优化速度性能,引入更先进的网络结构设计或者采用更有效的训练策略来提升整体表现。

### 适用于息肉检测的数据集准备

为了使用YOLOv5或假设存在的YOLOv8进行息肉检测任务的训练,首先需要准备好相应的标注数据集。这类数据集应该包含大量内窥镜检查图片,并且每张图片中息肉的位置已经被准确地标记出来。标记文件一般采用YOLO格式,即每个对象一行,形式为`class_id center_x center_y width height`,所有数值都是相对于图像尺寸归一化后的值。其中`class_id`表示类别编号,在单一类别的息肉检测场景下固定为0;其他参数则描述了包围盒的位置与大小。

### 数据集调整至Yolo格式

- **收集原始数据**:从医院或其他合法途径获取经过脱敏处理的内窥镜图像。
- **图像标注**:利用专业工具(如LabelImg, CVAT等)对图像中的息肉位置进行手工标注。
- **转换标签文件**:将得到的XML/PASCAL VOC等形式的标注文件转换成YOLO要求的txt格式。
- **划分数据集**:按照一定比例(例如70%训练、20%验证、10%测试)随机分割整个数据集。
- **配置文件设置**:编辑YOLO配置文件以匹配你的数据集特征,比如定义正确的类别数、输入尺寸等。

### 训练流程概述

一旦数据集准备完毕,接下来就可以开始使用YOLOv5/YOLOv8进行训练了:

1. **安装依赖项**:确保安装了必要的Python包及CUDA驱动程序。
2. **下载预训练权重**:可以利用官方提供的预训练模型作为起点。
3. **修改配置**:根据实际情况调整超参数设置。
4. **执行训练脚本**:运行命令行指令启动训练过程。
5. **评估与调优**:定期检查模型的表现并根据需要作出相应调整。
6. **保存最佳模型**:选择性能最好的模型保存下来用于后续测试或生产环境部署。

通过上述步骤,你可以构建出一个高效精准的息肉检测系统,从而辅助医生更快地识别潜在病灶,提高诊疗效率。请注意,在实际操作过程中还需要遵守相关的法律法规,特别是涉及到个人隐私保护方面的问题。

本项目利用一个改自公开分割数据集的息肉检测数据集,通过YOLOv5和YOLOv8等目标检测模型实现了内窥镜图像中息肉的自动检测。

数据集结构

polyp_detection_dataset/
├── images/  # 存放内窥镜图像
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ...
├── labels/  # 存放对应的YOLO格式标签文件
│   ├── image1.txt
│   ├── image2.txt
│   └── ...
└── README.md  # 数据集说明文档

标注格式

每个图像都有一个对应的文本文件,存储在labels/目录下。文本文件的每一行代表一个检测对象,格式如下:

<class_id> <x_center> <y_center> <width> <height>
  • class_id:类别ID,对于息肉检测任务,通常只有一个类别,即息肉。
  • x_center 和 y_center:边界框中心点的归一化坐标(相对于图像宽度和高度)。
  • width 和 height:边界框的宽度和高度的归一化值。

项目实现

1. 数据加载器
import torch
from torchvision import transforms
from PIL import Image
import osclass PolypDetectionDataset(torch.utils.data.Dataset):def __init__(self, img_dir, label_dir, transform=None):self.img_dir = img_dirself.label_dir = label_dirself.transform = transformself.images = [f for f in os.listdir(img_dir) if f.endswith('.jpg') or f.endswith('.png')]def __len__(self):return len(self.images)def __getitem__(self, idx):img_path = os.path.join(self.img_dir, self.images[idx])label_path = os.path.join(self.label_dir, self.images[idx].replace('.jpg', '.txt').replace('.png', '.txt'))image = Image.open(img_path).convert("RGB")with open(label_path, 'r') as f:labels = f.readlines()boxes = []labels = []for line in labels:class_id, x_center, y_center, width, height = map(float, line.strip().split())boxes.append([x_center, y_center, width, height])labels.append(int(class_id))boxes = torch.tensor(boxes, dtype=torch.float32)labels = torch.tensor(labels, dtype=torch.int64)if self.transform:image, boxes, labels = self.transform(image, boxes, labels)return image, {'boxes': boxes, 'labels': labels}# 数据增强
transform = transforms.Compose([transforms.Resize((640, 640)),transforms.ToTensor(),
])dataset = PolypDetectionDataset(img_dir='polyp_detection_dataset/images', label_dir='polyp_detection_dataset/labels', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2, collate_fn=lambda x: tuple(zip(*x)))
2. 模型定义与训练

这里以YOLOv5为例展示模型定义和训练过程:

2.1 安装依赖

确保你已经安装了YOLOv5及其依赖库:

pip install -r requirements.txt
2.2 训练脚本
import torch
from yolov5.models.yolo import Model
from yolov5.utils.loss import ComputeLoss
from yolov5.utils.general import non_max_suppression
from utils.datasets import create_dataloaderdef train_one_epoch(model, optimizer, dataloader, device):model.train()for images, targets in dataloader:images = list(image.to(device) for image in images)targets = [{k: v.to(device) for k, v in t.items()} for t in targets]loss_dict = model(images, targets)losses = sum(loss for loss in loss_dict.values())optimizer.zero_grad()losses.backward()optimizer.step()print(f"Loss: {losses.item()}")# 初始化模型
model = Model('yolov5s.yaml')
model.load_state_dict(torch.load('models/yolov5s.pt'), strict=False)
model.to(device)# 优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 数据加载器
dataloader = create_dataloader('polyp_detection_dataset/images', 'polyp_detection_dataset/labels', batch_size=4, img_size=640)# 训练
num_epochs = 10
for epoch in range(num_epochs):train_one_epoch(model, optimizer, dataloader, device)torch.save(model.state_dict(), f'models/polyp_yolov5_epoch_{epoch}.pt')
3. 模型测试
import torch
import cv2
from yolov5.models.yolo import Model
from yolov5.utils.general import non_max_suppressiondef detect_polyps(image_path, model, device):model.eval()image = cv2.imread(image_path)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)image = cv2.resize(image, (640, 640))image = torch.from_numpy(image).permute(2, 0, 1).float().div(255.0).unsqueeze(0).to(device)with torch.no_grad():predictions = model(image)[0]predictions = non_max_suppression(predictions, conf_thres=0.5, iou_thres=0.4)return predictions# 加载模型
model = Model('yolov5s.yaml')
model.load_state_dict(torch.load('models/polyp_yolov5_best.pt'))
model.to(device)# 预测
predictions = detect_polyps('path/to/endoscopy_image.jpg', model, device)
print(predictions)

项目总结

本项目利用一个改自公开分割数据集的息肉检测数据集,通过YOLOv5和YOLOv8等目标检测模型实现了内窥镜图像中息肉的自动检测。数据集已经调整为YOLO格式,可以直接用于模型训练。实验结果表明,这些模型在息肉检测任务上表现出色,能够有效地辅助医生进行诊断。未来的研究方向包括进一步优化模型性能、扩展到其他类型的内窥镜图像以及开发实时检测系统。希望这个项目能为临床应用带来实际的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/444851.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transactional注解导致Spring Bean定时任务失效

背景 业务需要定时捞取数据库中新增的数据做数据处理及分析&#xff0c;更新状态&#xff0c;处理结束。而我们不能随意定义线程池&#xff0c;规定使用统一的标准规范来定义线程池。如在配置文件中配置线程池的属性&#xff1a;名称&#xff0c;线程核心数等&#xff0c;任务…

04-SpringBootWeb案例(中)

3. 员工管理 完成了部门管理的功能开发之后&#xff0c;我们进入到下一环节员工管理功能的开发。 基于以上原型&#xff0c;我们可以把员工管理功能分为&#xff1a; 分页查询&#xff08;今天完成&#xff09;带条件的分页查询&#xff08;今天完成&#xff09;删除员工&am…

Linux_kernel内核定时器14

一、内核定时器 1、内核定时器 使用方法&#xff1a; 2、系统时钟中断处理函数 1&#xff09;更新时间 2&#xff09;检查当前时间片是否耗尽 Linux操作系统是基于时间片轮询的&#xff0c;属于抢占式的内核 3&#xff09;jiffies 3、基本概念 1&#xff09;HZ HZ决定了1秒钟产…

OCP迎来新版本,让OceanBase的运维管理更高效

近期&#xff0c;OceanBase的OCP发布了新版本&#xff0c;全面支持 OceanBase 内核 4.3.2 及更低版本。新版本针对基础运维、性能监控、运维配置、外部集成等多个方面实现了 20余项的优化及强化措施&#xff0c;增强产品的易用性和稳定性&#xff0c;从而帮助用户更加高效地管理…

中国地级市生态韧性数据及城市生态韧性数据(2000-2022年)

一测算方式&#xff1a; 参考C刊《管理学刊》楚尔鸣&#xff08;2023&#xff09;老师的做法&#xff0c;城市生态韧性主要衡量一个城市在面临生态环境系统压力或突发冲击时&#xff0c;约束污染排放、维护生态环境状态和治理能力提升的综合水平。 参考郭海红和刘新民的研究&a…

Redis持久化机制(RDBAOF详解)

目录 一、Redis持久化介绍二、Redis持久化方式1、RDB持久化(1) 介绍(2) RDB持久化触发机制(3) RDB优点和缺点(4) RDB流程 2、AOF(append only file)持久化(1) 介绍(2) AOF优点和缺点(3) AOF文件重写(4) AOF文件重写流程 三、AOF和RDB持久化注意事项 一、Redis持久化介绍 Redis…

【小工具分享】下载保存指定网页的所有图片

一、保存百度首页所有的图片 先看一下保存的图片情况 二、思路 1、打开网页 2、获取所有图片 3、依次下载保存图片到指定路径 三、完整代码 from selenium import webdriver from selenium.webdriver.common.by import By b webdriver.Firefox() import urllib.request…

C++系统教程004-数据类型(03)

一 .变量 变量是指在程序运行期间其值可以发生改变的量。每个变量都必须有一个名称作为唯一的标识&#xff0c;且具有一个特定的数据类型。变量使用之前&#xff0c;一定要先进行声明或定义。 1.变量的声明和定义 C中&#xff0c;变量声明是指为变量提供一个名称&#xff0c…

嵌入式面试——FreeRTOS篇(七) 软件定时器

本篇为&#xff1a;FreeRTOS 软件定时器篇 一、软件定时器的简介 1、定时器介绍 答&#xff1a; 定时器&#xff1a;从指定的时刻开始&#xff0c;经过一个指定时间&#xff0c;然后触发一个超时事件&#xff0c;用户可以自定义定时器周期。 硬件定时器&#xff1a;芯片本…

基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 DE优化 4.2 GWO优化 5.完整程序 1.程序功能描述 基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真&#xff0c;对比SVM和GWO-SVM。 2.测试软件版本以及运行结果展示…

论文阅读:Split-Aperture 2-in-1 Computational Cameras (二)

Split-Aperture 2-in-1 Computational Cameras (一) Coded Optics for High Dynamic Range Imaging 接下来&#xff0c;文章介绍了二合一相机在几种场景下的应用&#xff0c;首先是高动态范围成像&#xff0c;现有的快照高动态范围&#xff08;HDR&#xff09;成像工作已经证…

自然语言处理(NLP)论文数量的十年趋势:2014-2024

引言 近年来&#xff0c;自然语言处理&#xff08;NLP&#xff09;已成为人工智能&#xff08;AI&#xff09;和数据科学领域中的关键技术之一。随着数据规模的不断扩大和计算能力的提升&#xff0c;NLP技术从学术研究走向了广泛的实际应用。通过观察过去十年&#xff08;2014…

处理 Vue3 中隐藏元素刷新闪烁问题

一、问题说明 页面刷新&#xff0c;原本隐藏的元素会一闪而过。 效果展示&#xff1a; 页面的导航栏通过路由跳转中携带的 meta 参数控制导航栏的 显示/隐藏&#xff0c;但在实践过程中发现&#xff0c;虽然元素隐藏了&#xff0c;但是刷新页面会出现闪烁的问题。 项目源码&…

ros2:从github上下载源码进行编译

首先&#xff0c;创建工作空间 # 1. 递归创建工作空间目录 mkdir -p catkin_ws/src # 2. 进入src目录 cd catkin_ws/src然后如果你没有安装git&#xff0c;需要 sudo apt install git然后输入。 git clone https://github.com/6-robot/wpr_simulation.git这时候&#xff0c;…

MYSQL 常见锁机制详解,常见锁问题排查及分析

1&#xff0c;锁分类 锁冲突是影响数据库性能的重要指标&#xff0c;本章节介绍MYSQL常见锁&#xff0c;及各种说的常用示例&#xff0c;mysql锁的分类如下&#xff1a; 从操作类型分类&#xff1a;读锁、写锁&#xff1b; 从操作粒度分类&#xff1a;表锁、页锁、行锁&#x…

文献阅读Prov-GigaPath模型--相关知识点罗列

文章链接&#xff1a;A whole-slide foundation model for digital pathology from real-world data | NatureDigital pathology poses unique computational challenges, as a standard gigapixel slide may comprise tens of thousands of image tiles1–3. Prior models hav…

Java中的二维数组

二维数组 使用方式1&#xff1a;动态初始化1.语法&#xff1a;2.比如&#xff1a;3.二维数组在内存的存在形式 使用方式2&#xff1a;动态初始化使用方法3&#xff1a;动态初始化--列数不确定使用方式4&#xff1a;静态初始化1.定义2.使用 使用方式1&#xff1a;动态初始化 1.…

HiRT | 异步控制策略,告别VLA时延问题

论文&#xff1a;HiRT: Enhancing Robotic Control with Hierarchical Robot Transformers 前言&#xff1a;HiRT 通过异步处理的策略&#xff0c;将 VLM 作为低频慢思考过程&#xff0c;将轻量的动作策略模型作为高频快响应过程 &#xff0c;以此解决 VLA 驱动带来的控制时延问…

RNN经典案例——构建人名分类器

RNN经典案例——人名分类器 一、数据处理1.1 去掉语言中的重音标记1.2 读取数据1.3 构建人名类别与人名对应关系字典1.4 将人名转换为对应的onehot张量 二、构建RNN模型2.1 构建传统RNN模型2.2 构建LSTM模型2.3 构建GRU模型 三、构建训练函数并进行训练3.1 从输出结果中获得指定…

TON生态小游戏开发:推广、经济模型与UI设计的建设指南

随着区块链技术的快速发展&#xff0c;基于区块链的Web3游戏正引领行业变革。而TON生态小游戏&#xff0c;借助Telegram庞大的用户基础和TON&#xff08;The Open Network&#xff09;链上技术&#xff0c;已成为这一领域的明星之一。国内外开发者正迅速涌入&#xff0c;开发和…