【鸟类识别系统】Python+卷积神经网络算法+人工智能+深度学习+ResNet50算法+计算机课设项目

一、介绍

鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。


本项目通过人工智能技术实现对鸟类图像的自动识别,满足用户在日常生活中快速、准确地识别鸟类的需求。该系统采用Python作为主要开发语言,并使用TensorFlow框架构建了一个基于ResNet50卷积神经网络的深度学习模型。ResNet50模型因其较深的网络结构和优秀的特征提取能力,被广泛应用于图像识别领域。在本项目中,我们使用了来自加利福尼亚大学开源的包含200种鸟类的图像数据集进行模型训练和测试。通过数据的预处理与模型的迭代训练,最终获得了一个识别精度较高的模型,并将其保存为H5格式文件,便于后续的加载和部署。

在可视化操作界面开发方面,项目采用Django框架开发了一个用户友好的Web操作界面,用户只需上传一张鸟类图像,系统便可快速分析图像内容,并给出该鸟类的具体名称。Django作为后台框架,不仅实现了前端与模型之间的无缝连接,还通过其稳定的数据库管理功能,支持用户上传记录的管理和存储。本系统结合了深度学习技术与Web开发技术,具有较强的实用性和易用性,能够为鸟类爱好者、研究人员以及相关领域的从业者提供高效、便捷的识别服务。

二、系统效果图片展示

img_06_15_20_05_17

img_06_15_20_05_25

img_06_15_20_05_43

三、演示视频 and 完整代码 and 安装

获取地址:https://www.yuque.com/ziwu/yygu3z/txsu6elpcf0o5az1

四、ResNet50卷积神经网络算法

ResNet50(Residual Network 50)是一种深度卷积神经网络,它在图像识别领域表现出色。ResNet由何凯明等人在2015年提出,解决了深层网络训练时的梯度消失和梯度爆炸问题。传统的深层神经网络在层数增加后,往往因梯度消失或爆炸导致网络性能下降,而ResNet通过引入残差连接(Residual Connection)有效地缓解了这一问题。

ResNet50指的是该网络有50层深度,主要由卷积层、池化层、批归一化层(Batch Normalization)和残差块(Residual Blocks)组成。残差块的引入使网络能够学习到残差,即目标输出与输入之间的差异,而不是直接学习输入到输出的映射,这样可以加快网络的收敛速度,并提升模型的准确性。在每个残差块中,输入经过若干卷积层后会被直接加到输出上,这种“跳跃连接”使得梯度可以顺利地传播到前面层,避免梯度消失。

ResNet50的结构复杂,具备较强的特征提取能力,适用于处理大规模的图像分类问题。在本项目的鸟类识别系统中,ResNet50通过提取鸟类图像的高维特征并进行分类,达到了较高的识别精度。

以下是一个使用ResNet50模型进行迁移学习的Python代码示例,通过Keras库加载预训练的ResNet50模型,并在自定义数据集上进行微调:

import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D# 加载预训练的ResNet50模型,不包含顶层全连接层
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))# 构建自定义分类模型
model = Sequential([base_model,GlobalAveragePooling2D(),Dense(1024, activation='relu'),Dense(200, activation='softmax')  # 假设数据集中有200个类别
])# 冻结ResNet50的卷积层权重,仅训练顶部全连接层
base_model.trainable = False# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 使用ImageDataGenerator进行数据增强
train_datagen = ImageDataGenerator(rescale=1./255, horizontal_flip=True, rotation_range=20)
train_generator = train_datagen.flow_from_directory('data/train', target_size=(224, 224), batch_size=32, class_mode='categorical')# 训练模型
model.fit(train_generator, epochs=10)

这段代码展示了如何利用ResNet50的预训练权重,并结合自定义数据集进行迁移学习,能够快速在特定分类任务中获得良好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/445619.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AI论文精读13】RAG论文综述2(微软亚研院 2409)P5-可解释推理查询L3

AI知识点总结:【AI知识点】 AI论文精读、项目、思考:【AI修炼之路】 P1,P2,P3,P4 五、可解释推理查询(L3) ps:P2有四种查询(L1,L2,L3,…

java生成日历数据列表并按日历格式导出到excel

日历格式输出 日历数据列表导出封装日历格式实体类效果 日历数据列表 /**** 封装日历数据* param year 年份* param month 月份*/public List<InspectionDailyStaffPlanCalendarData> selectCalendarDataList(int year,int month,List<InspectionDailyStaffPlan> …

面试(十)

目录 一. 单元测试 二. FreeRTOS和裸机哪个实时性好&#xff1f; 三. 怎么判断某个程序的运行时间 四. 函数指针 五. 全局变量被线程使用冲突 5.1 使用互斥锁 5.2 使用读写锁 5.3 使用原子操作 六. 局部变量没有初始化是什么值 七. uint_8 n 255 , n等于多少 八. …

Unity UndoRedo(撤销重做)功能

需求 撤销与重做功能 思考 关于记录的数据的两点思考&#xff1a; 记录操作记录影响显示和逻辑的所有数据 很显然这里就要考虑取舍了&#xff1a; 记录操作 这种方案只需要记录每一步的操作&#xff0c;具体这个操作要怎么渲染和实现出来完全需要自己去实现&#xff0c;这…

JAVA-数据结构-排序

1.直接插入排序 1.原理&#xff1a;和玩扑克牌一样&#xff0c;从左边第二个牌开始&#xff0c;选中这个&#xff0c;和前面的所有牌比较&#xff0c;插在合适的位置 public static void insertsort(int[] arr){//直接插入排序for (int i 1; i < arr.length; i) {//此循环…

手撕数据结构 —— 栈(C语言讲解)

目录 1.认识栈 什么是栈 栈的示意图 2.如何实现栈 3.栈的实现 Stack.h中接口总览 具体实现 结构的定义 初始化栈 销毁栈 入栈 出栈 取栈顶元素 获取有效元素的个数 判断栈是否为空 4.完整代码附录 Stack.h Stack.c 1.认识栈 什么是栈 栈是一种特殊的线性表…

学视频剪辑需要电脑吗 学视频剪辑需要什么条件

态度决定成败&#xff0c;学剪辑亦是如此。我们都在学习剪辑的道路上寻找答案&#xff0c;电脑就像指引答案的工具&#xff0c;但它本身并不是答案。所以&#xff0c;好电脑不等于好剪辑师。想要学好视频剪辑&#xff0c;你只需要一个态度端正的自己。有关学视频剪辑需要电脑吗…

Spring Cloud Stream 3.x+kafka 3.8整合

Spring Cloud Stream 3.xkafka 3.8整合&#xff0c;文末有完整项目链接 前言一、如何看官方文档(有深入了解需求的人)二、kafka的安装tar包安装docker安装 三、代码中集成创建一个测试topic&#xff1a;testproducer代码producer配置&#xff08;配置的格式&#xff0c;上篇文章…

基于SpringBoot+Vue的疫苗预约接种管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

DELL R720服务器阵列数据恢复,磁盘状态为Foreign

服务器无法正常进入系统&#xff0c;物理磁盘状态变成了Foreign 虚拟磁盘状态变成了Failed 阵列已经丢失了&#xff0c;需要手工强制导入外部配置 单击 Main Menu 屏幕上的 Configuration Management。单击 Manage Foreign Configuration 单击 Preview Foreign Configurati…

60. 排列序列【回溯】

文章目录 60. 排列序列解题思路Go代码 60. 排列序列 60. 排列序列 给出集合 [1,2,3,...,n]&#xff0c;其所有元素共有 n! 种排列。 按大小顺序列出所有排列情况&#xff0c;并一一标记&#xff0c;当 n 3 时, 所有排列如下&#xff1a; “123”“132”“213”“231”“31…

VMDK 0X80BB0005 VirtualBOX虚拟机错误处理-数据恢复——未来之窗数据恢复

打开虚拟盘文件in7.vmdk 失败. Could not get the storage format of the medium 7\win7.vmdk (VERR_NOT_SUPPORTED). 返回 代码:VBOX_E_IPRT_ERROR (0X80BB0005) 组件:MediumWrap 界面:IMedium {a a3f2dfb1} 被召者:IVirtualBox {768 cd607} 被召者 RC:VBOX_E_OBJECT_NOT_F…

Qt基础对话框QDialog

模态显示对话框 调用exec方法可以使得对话框模态显示&#xff0c;但是一个阻塞函数 [virtual slot] int QDialog::exec() 对话框的三个槽函数 accept [virtual slot] void QDialog::accept(); reject [virtual slot] void QDialog::reject() done [virtual slot] void QDia…

Nginx从入门到实战(八):版本平滑无感知,不停机升级

一、查看旧版本信息 可以通过nginx -V命令&#xff0c;来查看当前nginx的版本信息&#xff0c;和配置参数。 [rootnb001 sbin]# nginx -V -bash: nginx: command not found [rootnb001 sbin]# ./nginx -V nginx version: nginx/1.20.1 built by gcc 4.8.5 20150623 (Red Hat …

Spring Boot读取resources目录下文件(打成jar可用),并放入Guava缓存

1、文件所在位置&#xff1a; 2、需要Guava依赖&#xff1a; <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>23.0</version></dependency>3、启动时就读取放入缓存的代码&#xf…

gaussdb hccdp理论考试总结

判断题1分&#xff0c;单选题2分&#xff0c;多选题3分 共50道题&#xff0c;满分100分&#xff0c;60分通过。 理论考试知识点占比&#xff1a; 理论考试参考策略&#xff1a; 1.7张PPT看一遍 2.思考题做一遍 3.模拟题做一遍 4.7张PPT再看一遍 5.考题知识点过一遍 6.考试前一…

ZYNQ使用XGPIO驱动外设模块(前半部分)

目录 目录 一、新建BD文档&#xff0c;添加ZYNQ处理器 1.BD文档: 2.在Vivado中&#xff0c;BD文件的生成过程通常包括以下步骤&#xff1a; 1)什么是Tcl Console: 3.PL部分是FPGA可编程逻辑部分&#xff0c;它提供了丰富的IO资源&#xff0c;可以用于实现各种硬件接口和功…

QT 连接SQL SEVER 之后无法读取浮点和整型

1、ODBC Driver 的版本要对应上。 if (!strDbDirPath.isEmpty())m_strDbDirPath strDbDirPath;m_strDatabaseName strDatabaseName;if (m_database.isOpen() || m_bConnected){qDebug() << QString("QODBC:已经连接成功&#xff01;") << "\n&quo…

Power Pivot, PowerView和PowerBI在产品宣传,功能,及本质上有什么不同?

微软的Power Pivot、Power View和Power BI是三个不同的数据分析和商业智能工具&#xff0c;它们在产品宣传、功能和本质上有所区别&#xff0c;并且各自适用于不同的场景。 1. Power Pivot Power Pivot是一种数据建模技术&#xff0c;用于在Excel中创建数据模型&#xff0c;建…

Halcon 3D应用 - 胶路提取

1. 需求 本文基于某手环&#xff08;拆机打磨处理&#xff09;做的验证性工作&#xff0c;为了项目保密性&#xff0c;只截取部分数据进行测试。 这里使用的是海康3D线激光轮廓相机直线电机的方式进行的高度数据采集&#xff0c;我们拿到的是高度图亮度图数据。 提取手环上的胶…