人工智能的核心技术之机器学习

大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。

人工智能(AI)核心技术概述:

人工智能(AI)是一个快速发展的领域,其核心技术不断演进和扩展。以下是一些当前人工智能领域的关键技术:

  1. 机器学习(Machine Learning):这是AI的一个分支,使计算机能够从数据中学习并做出预测或决策。

  2. 深度学习(Deep Learning):是机器学习的一个子集,它使用多层神经网络来模拟人脑的信息处理方式,处理复杂的数据模式。

  3. 自然语言处理(Natural Language Processing, NLP):使计算机能够理解、解释和生成人类语言的技术。

  4. 计算机视觉(Computer Vision):使计算机能够从图像或多维数据中解释和理解视觉信息。

  5. 语音识别(Speech Recognition):使计算机能够识别和理解人类语音的技术。

  6. 强化学习(Reinforcement Learning):一种机器学习方法,通过奖励和惩罚机制来训练算法,使其能够在特定环境中做出决策。

  7. 专家系统(Expert Systems):模拟人类专家决策的系统,通常用于特定领域的复杂问题解决。

  8. 机器人技术(Robotics):涉及设计、制造和应用机器人,结合AI技术可以提高机器人的自主性和智能。

  9. 知识表示和推理(Knowledge Representation and Reasoning):涉及如何以机器可理解的形式表示知识,并使用这些知识进行逻辑推理。

  10. 数据挖掘(Data Mining):从大量数据中发现模式和关系的过程。

  11. 神经符号集成(Neural-Symbolic Integration):尝试将深度学习的强大能力和符号推理的逻辑性结合起来。

  12. 边缘计算(Edge Computing):在数据源附近进行数据处理,以减少延迟和带宽使用,这对于需要快速响应的AI应用(如自动驾驶汽车)至关重要。

  13. 量子计算(Quantum Computing):虽然仍处于早期阶段,但量子计算有潜力极大地加速某些类型的AI计算。

这些技术相互交织,共同推动了人工智能的发展和应用。随着研究的深入和技术的进步,还会出现新的核心技术。

机器学习技术的详细解析:

机器学习是人工智能的一个核心分支,它使计算机系统能够利用数据和算法自动学习和改进。以下是机器学习的详细概念:

  1. 定义: 机器学习是一种数据分析技术,它专注于开发数学模型,使用数据来不断改进其性能。它使计算机能够从数据中学习并做出预测或决策,而无需明确编程。

  2. 关键要素

    • 数据(Data):机器学习模型的训练和测试需要大量的数据。
    • 算法(Algorithms):用于从数据中学习模式和关系的数学模型。
    • 模型(Models):算法训练后的结果,可以用于预测或决策。
    • 性能度量(Performance Metrics):用于评估模型准确性和有效性的标准。
  3. 主要类型

    • 监督学习(Supervised Learning):使用标记的训练数据来学习一个模型,该模型可以预测未见过的数据的输出。
    • 无监督学习(Unsupervised Learning):使用未标记的数据来发现数据中的模式或结构。
    • 半监督学习(Semi-supervised Learning):结合了少量标记数据和大量未标记数据。
    • 强化学习(Reinforcement Learning):通过与环境的交互来学习,目标是最大化累积奖励。
  4. 常见算法

    • 线性回归(Linear Regression):用于预测连续值。
    • 逻辑回归(Logistic Regression):用于二分类问题。
    • 决策树(Decision Trees):通过学习简单的决策规则来预测结果。
    • 支持向量机(Support Vector Machines, SVM):寻找不同类别之间的最佳边界。
    • 随机森林(Random Forest):集成多个决策树以提高预测准确性。
    • 梯度提升机(Gradient Boosting Machines, GBM):通过迭代地添加弱预测模型来提高预测准确性。
    • 神经网络(Neural Networks):模仿人脑的神经元网络,用于复杂模式识别。
    • 深度学习(Deep Learning):使用多层神经网络来学习数据的复杂表示。
  5. 应用领域

    • 图像识别:识别图像中的对象、场景和活动。
    • 语音识别:将语音转换为文本或执行语音命令。
    • 自然语言处理:理解和生成人类语言。
    • 推荐系统:推荐用户可能感兴趣的产品或内容。
    • 预测分析:预测股票市场、天气、销售等。
    • 自动驾驶汽车:识别道路标志、行人和其他车辆。
  6. 挑战和限制

    • 数据质量:需要大量高质量数据来训练有效的模型。
    • 过拟合:模型在训练数据上表现良好,但在未见过的数据上表现差。
    • 解释性:某些模型(如深度神经网络)的决策过程难以解释。
    • 偏见和公平性:数据中的偏见可能导致模型的不公平决策。

机器学习是一个不断发展的领域,随着新技术和算法的出现,其概念和应用也在不断扩展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446413.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用DataX同步hive数据到MySQL

目录 1、组件环境 2、安装datax 2.1、下载datax并解压 3、安装datax-web 3.0、下载datax-web的源码,进行编译 3.1、在MySQL中创建datax-web元数据 3.2、安装data-web 3.2.1执行install.sh命令解压部署 3.2.1、手动修改 datax-admin配置文件 3.2.2、手动修改…

「Ubuntu」文件权限说明(drwxr-xr-x)

我们在使用Ubuntu 查看文件信息时,常常使用 ll 命令查看,但是输出的详细信息有些复杂,特别是 类似与 drwxr-xr-x 的字符串,在此进行详细解释下 属主:所属用户 属组:文件所属组别 drwxr-xr-x 7 apps root 4…

Pytorch基础:设置随机种子

相关阅读 Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm1001.2014.3001.5482 有时候,如果需要代码在多个运行中具有可重复性,可以通过以下方式来设置随机种子: import torch import numpy as np import r…

【亲测可行】最新ubuntu搭建rknn-toolkit2

文章目录 🌕结构图(ONNX->RKNN)🌕下载rknn-toolkit2🌕搭建环境🌙配置镜像源🌙conda搭建python3.8版本的虚拟环境🌙进入packages目录安装依赖库🌕测试安装是否成功🌕其它🌙rknn-toolkit2🌙rknn_model_zoo🌙关于部署的博客发布本文的时间为2024.10.13…

【进阶OpenCV】 (11)--DNN板块--实现风格迁移

文章目录 DNN板块一、DNN特点二、DNN函数流程三、实现风格迁移1. 图像预处理2. 加载星空模型3. 输出处理 总结 DNN板块 DNN模块是 OpenCV 中专门用来实现 DNN(Deep Neural Networks,深度神经网络) 模块的相关功能,其作用是载入别的深度学习框架(如 TensorFlow、Caf…

【微信小程序_11_全局配置】

摘要:本文介绍了微信小程序全局配置文件 app.json 中的常用配置项,重点阐述了 window 节点的各项配置,包括导航栏标题文字、背景色、标题颜色,窗口背景色、下拉刷新样式以及上拉触底距离等。通过这些配置可实现小程序窗口外观的个性化设置,提升用户体验。 微信小程序_11_全…

如何成为 Rust 核心贡献者?Rust 开发的核​​心是什么?Rust 重要技术专家揭秘

10 月 17 - 18日,由 GOSIM 开源创新汇主办、CSDN 承办的 GOSIM CHINA 2024 将在北京盛大启幕。作为 GOSIM 开源年度大会的第三届盛会,本次活动邀请了 60 多位国际开源专家,汇聚了来自全球百余家顶尖科技企业、知名高校及开源社区的技术大咖、…

回溯法与迭代法详解:如何从手机数字键盘生成字母组合

在这篇文章中,我们将详细介绍如何基于手机数字键盘的映射,给定一个仅包含数字 2-9 的字符串,输出它能够表示的所有字母组合。这是一个经典的回溯算法问题,适合初学者理解和掌握。 问题描述 给定一个数字字符串,比如 …

python基础路径的迁移

本人未安装anaconda或pycharm等,仅安装了某个python环境,因此以下方法仅针对基础python环境的迁移,不确保其他软件或插件正常运行 第一步将原python路径的整个文件夹剪切到新的路径下 第二步修改系统环境变量,将原来的python路径…

php 生成随机数

记录:随机数抽奖 要求:每次生成3个 1 - 10 之间可重复(或不可重复)的随机数,10次为一轮,每轮要求数字5出现6次、数字4出现3次、…。 提炼需求: 1,可设置最小数、最大数、每次抽奖生…

鸿蒙--商品列表

这里主要利用的是 List 组件 相关概念 Scroll:可滚动的容器组件,当子组件的布局尺寸超过父组件的视口时,内容可以滚动。List:列表包

AI+若依框架day02

项目实战 项目介绍 帝可得是什么 角色和功能 页面原型 库表设计 初始AI AIGC 提示工程 Prompt的组成 Prompt练习 项目搭建 点位管理 需求说明 库表设计

浏览器中使用模型

LLM 参数越来越小,使模型跑在端侧成为可能,为什么要模型跑在端侧呢,首先可以节省服务器的算力,现在 GPU 的租用价格还是比较的高的,例如租用一个 A10 的卡1 年都要 3 万多。如果将一部分算力转移到端侧通过小模型进行计…

【LeetCode热题100】分治-快排

本篇博客记录分治快排的4道题目&#xff1a;颜色分类、排序数组、数组中的第K个最大元素、数组中最小的N个元素&#xff08;库存管理&#xff09;。 class Solution { public:void sortColors(vector<int>& nums) {int n nums.size();int left -1,right n;for(int…

React速成

useRef获取DOM 组件通讯 子传父 function Son({ onGetMsg }){const sonMsg this is son msgreturn (<div>{/* 在子组件中执行父组件传递过来的函数 */}<button onClick{()>onGetMsg(sonMsg)}>send</button></div>) }function App(){const getMsg…

Python基础常见面试题总结

文章目录 1.深拷贝与浅拷贝2.迭代器3.生成器4.装饰器5.进程、线程、协程6.高阶函数7.魔法方法8.python垃圾回收机制 1.深拷贝与浅拷贝 浅拷贝是对地址的拷贝&#xff0c;只拷贝第一层&#xff0c;第一层改变的时候不会改变&#xff0c;内层改变才会改变。深拷贝是对值的拷贝&a…

智能驾驶|迈向智能出行未来,AI如何应用在自动驾驶?

自动驾驶通过人工智能&#xff08;AI&#xff09;、机器学习、传感器融合和实时数据处理&#xff0c;使车辆能够在无需人类干预的情况下自主驾驶。随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;与智能汽车的结合正在成为现代交通运输领域的热潮。无人驾驶…

selenium-Alert类用于操作提示框/确认弹框(4)

之前文章我们提到&#xff0c;在webdriver.WebDriver类有一个switch_to方法&#xff0c;通过switch_to.alert()可以返回Alert对象&#xff0c;而Alert对象主要用于网页中弹出的提示框/确认框/文本输入框的确认或者取消等动作。 Alert介绍 当在页面定位到提示框/确认框/文本录入…

Flythings学习(二)控件相关

文章目录 1 前言2 通用属性2.1 控件ID值2.2 控件位置2.3 背景色2.4 背景图2.5 显示与隐藏2.6 控件状态2.7 蜂鸣器控制 3 文本类TextView4 按键类 Button4.1 系统按键4.2 处理按钮长按事件4.3 处理按键触摸事件 5 复选框CheckBox6 单选组 RadioGroup7 进度条&#xff0c;滑块7.1…

Ubuntu卸载Mysql【ubuntu 24.04/mysql 8.0.39】

一、准备工作 查看ubuntu版本号 查看mysql版本号(如果没有安装mysql,这一步省略) 二、Ubuntu上卸载mysql(如果没有安装mysql这一步省略) 在Ubuntu上卸载MySQL可以通过以下步骤进行&#xff0c;确保完全移除MySQL相关的包和数据&#xff1a; 1. 停止MySQL服务 在卸载之前…