快排和归并

目录

前言

 快速排序

相遇位置一定比key小的原理(大):

避免效率降低方法(快排优化)

三数取中(选key优化)

小区间优化

hoare版本快排

挖坑法快排

前后指针快排

非递归快排

归并排序

非递归归并

总结:​编辑


前言

本篇讲解上一篇没有讲解的快速排序和归并排序;

上篇排序:常见排序算法-CSDN博客

本期专栏:算法_海盗猫鸥的博客-CSDN博客

个人主页:海盗猫鸥-CSDN博客

这两种排序思想较为复杂,和堆排序、希尔排序,都为效率较高的排序算法;且快排和归并都分为递归和非递归两种实现方法。

 快速排序

hoare方法原理解析:升序

图中循环开始时L指向比较区间的最左,R指向比较区间的最右位置

1. 假设确定最左的数为key值

2. 则R--寻找小于key的值;L++寻找大于key的值;找到后交换R和L所指向位置的值

3. 如此循环下去,直到R等于L,循环结束,将key值和相遇位置(一定小于key)的值进行交换,并将key指向相遇位置

4.完成一次循环之后,小于key的值都在此时key位置的左边,大于key的值都在key位置右边

5.将此时的key位置作为分界点,分为左右俩区间进行递归

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void QuickSort(int* arr, int left, int right)
{if (left >= right){return;}//以key为基准int keyi = left;int begin = left;int end = right;while (begin < end){//先找小,后找大,能保证begin和end相遇位置的数据一定小于keyi位置的数据//右边找小while (begin < end && arr[end] >= arr[keyi]){end--;}//左边找大while (begin < end && arr[begin] <= arr[keyi]){begin++;}Swap(&arr[begin], &arr[end]);}//Swap(&arr[keyi], &arr[begin]);keyi = begin;QuickSort(arr, left, keyi - 1);QuickSort(arr, keyi + 1, right);
}

相遇位置一定比key小的原理(大):

升序:

left做key,保证R先走,就能保证相遇位置一定小于key(相对的,right做key时,就要让L先走,保证相遇位置比key大)

降序排列时则相反

因为在上一次交换中,L与R交换值,L所指向的位置就一定已经是小于key的值了,此时到下一个循环,R先再往前走L还没有动,所以当R遇到L时就一定是上一轮交换过来的,小于key的值,所以相遇位置一定小于key;

反之如果先让L先走,那么相遇位置就一定是上一轮交换完成后,大于key的值所在的位置,也就是上一轮R所在位置,一定大于key值

当前版本的快排,当数据本身就有序时,快排的时间复杂度将会退化为N^2

并且有栈溢出的风险,递归深度太深将导致栈溢出,因为函数栈帧空间较小

当每次的key越接近中间位置时,快排的时间复杂度约为O(N*logN):;​

避免效率降低方法(快排优化)

三数取中(选key优化)

想办法使key的值更接近中间,

  1. 使用随机值赋值key(可以避免效率降低到O(N^2),但随机性任然较大);

  2. 三数取中

    将排序区间的left,right和位于最中间的数比较;取大小居中的那个数作为key值;但为保证后续排序逻辑不变,要将key值和最左left位置上的值进行交换

小区间优化

假设每次key都比较接近中间位置,那么每次区间分割都可以大致看为二分,则其递归的形式就形似二叉树,效率最高;但当数据个数较少时,使用递归来排序是不太合适的

所以当区间数据个数较少时,我们可以直接使用插入排序

hoare版本快排

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}//三数取中
int GetMidi(int* arr, int left, int right)
{//返回三个数中值最小的下标int midi = (left + right) / 2;if (arr[left] > arr[midi]){if (arr[midi] > arr[right])return midi;else if (arr[left] > arr[right])return right;elsereturn left;}else//arr[left] < arr[midi]{if (arr[midi] < arr[right])return midi;else if (arr[left] < arr[right])return right;elsereturn left;}}//hoare
O(N*logN)
void QuickSort(int* arr, int left, int right)
{if (left >= right){return;}//小区间优化,不再采取递归的方式if ((right - left + 1) < 10){//传递区间的起始地址arr + leftInsertSort(arr + left, right - left + 1);}else{//以key为基准//固定以left为key时,当数组倒序时,将导致时间复杂度退化为O(N^2);//int keyi = left;//三数取中int midi = GetMidi(arr, left, right);Swap(&arr[left], &arr[midi]);//将要作为key的值交换到最左边int keyi = left;int begin = left;int end = right;while (begin < end){//先找小,后找大,能保证begin和end相遇位置的数据一定小于keyi位置的数据//右边找小while (begin < end && arr[end] >= arr[keyi]){end--;}//左边找大while (begin < end && arr[begin] <= arr[keyi]){begin++;}Swap(&arr[begin], &arr[end]);}//Swap(&arr[keyi], &arr[begin]);keyi = begin;QuickSort(arr, left, keyi - 1);QuickSort(arr, keyi + 1, right);}
}

挖坑法快排

原理解析:(升序)

1. 最左位置视为初始坑位,并将其值赋值给key存储起来,L指向最左边(此时L所指就是坑位),R指向最右位置;

2. R开始从右往左找小于key的值,找到后,将这个位置的值赋值给坑位,并将这个位置视为新的坑位;

3. 接着L从左往右找大于key的值,找到后,将这个位置的值赋值给坑位,并将这个位置视为新的坑位。

4. 直到L和R相遇(同时指向坑位),将key值赋值给坑位。此时小于key的值就都在坑位前,大于key‘的值都在坑位后

5. 以最后的坑位为分界,左右区间递归

void QuickSort(int* arr, int left, int right)
{if (left >= right){return;}//将第一个数据视为坑;int keni = left;int key = arr[keni];int begin = left;int end = right;while (begin < end){//找到小于key的值,填到坑中while (begin < end && arr[end] > key){end--;}arr[keni] = arr[end];keni = end;while (begin < end && arr[begin] < key){begin++;}arr[keni] = arr[begin];keni = begin;}//相遇后,将key值赋给坑的位置arr[keni] = key;QuickSort(arr, left, keni - 1);QuickSort(arr, keni + 1, right);
}

前后指针快排

原理解析(升序):

1. 以最左为key值,prev从排序区间的第一个位置开始,cur=prev+1开始

2. 当cur所指位置值小于key值时,prev++后将prev位置和cur位置的数据交换位置,然后cur++继续寻找下一个符合条件的数据;

3. cur所指位置值大于key时,直接cur++即可;不论cur所指是否满足交换条件,cur始终都要++;

(实际就是让大于key的值都放在prev和cur所指的区间之间,并将这些值通过交换一步步送到数组的右边);

4. 直到cur超出数组范围,此时prev所指的位置,左边就全是小于key的值,右边就全是大于key的值;

5. 交换prev位置和key位置的数据,将key重新指向prev,本次循环结束

6. 然后以新key位置为分界,左右区间递归

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void QuickSort(int* arr, int left, int right)
{if (left >= right)return;//小区间优化if ((right - left + 1) < 10){//传递区间的起始地址arr + leftInsertSort(arr + left, right - left + 1);}else{//三数取中(此优化后,逻辑会改变,原理分析处为没有三数取中优化的解析)int midi = GetMidi(arr, left, right);Swap(&arr[left], &arr[midi]);//将要作为key的值交换到最左边int keyi = left;int prev = left, cur = left + 1;//prev和cur中间都为大于key的值while (cur <= right){if (arr[cur] < arr[keyi] && ++prev)Swap(&arr[prev], &arr[cur]);cur++;}Swap(&arr[keyi], &arr[prev]);keyi = prev;QuickSort(arr, left, keyi - 1);QuickSort(arr, keyi + 1, right);}
}

非递归快排

使用栈来模拟递归的区间分解模式;

1. 循环每走一次相当于之前的一次递归;

2. 取栈顶区间,单趟排序,然后右左子区间入栈(栈后进先出)

代码:

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//非递归快排
//使用栈模拟递归分区逻辑(DFS深度优先)
//使用队列模拟(BFS广度优先)
void QuickSortNonR(int* arr, int left, int right)
{//创建栈,存入右左区间ST st;STInit(&st);STPush(&st,right);STPush(&st, left);//一次循环就是相当于一次递归while (!STEmpty(&st)){//取区间//栈先进后出,先出的为区间左边界int begin = STTop(&st);STPop(&st);int end = STTop(&st);STPop(&st);//排序(前后指针法)int keyi = begin;int prev = begin, cur = begin + 1;//prev和cur中间都为大于key的值while (cur <= end){if (arr[cur] < arr[keyi] && ++prev)Swap(&arr[prev], &arr[cur]);cur++;}Swap(&arr[keyi], &arr[prev]);keyi = prev;//存储右左区间if (keyi + 1 < end)//keyi + 1 < end说明还有两个数以上{STPush(&st, end);STPush(&st, keyi + 1);}if (begin < keyi - 1){STPush(&st, keyi - 1);STPush(&st, begin);}}
}

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序,上述几种在实际使用中效率差别不大
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(logN)(递归损耗)
  4. 稳定性:不稳定

归并排序

原理解析(升序):

1. 将数组从中间分为左右两个区间,

2. 如果左右区间不有序,就继续分解左右数组,直到左右区间中都只存在一个数时,左右区间就一定有序(一个单独的数据一定有序

3. 那么如果左右区间有序,就分别从左右区间的第一个数开始比较,将左右区间中的数按照升序插入到临时数组中,完成后,临时数组中就是一个顺序结构

上文动图只显示了合并的思想,分解的思想过程是由递归过程来实现

代码:

void _MergeSort(int* arr, int* tmp, int begin, int end)
{if (begin == end)return;//将区间从中间分为左右区间int midi = (begin + end) / 2;int begin1 = begin;int end1 = midi;int begin2 = midi + 1;int end2 = end;//[left,midi][midi+1,right]_MergeSort(arr, tmp, begin1, end1);_MergeSort(arr, tmp, begin2, end2);int i = begin;while (begin1 <= end1 && begin2 <= end2){if (arr[begin1] < arr[begin2])//小的先插入tmp{tmp[i++] = arr[begin1++];}else{tmp[i++] = arr[begin2++];}}//将没有完成插入的一边全部插入到tmpwhile (begin1 <= end1){tmp[i++] = arr[begin1++];}while (begin2 <= end2){tmp[i++] = arr[begin2++];}//排序结果memcpy(arr+ begin, tmp + begin, sizeof(int) * (end - begin + 1));
}//归并排序
void MergeSort(int* arr, int n)
{//假设左右区间都为有序//取左右区间小的那个数插入新数组int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail!");return;}//排序核心_MergeSort(arr, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

注意:区间划分问题

在进行左右分区时,不能使用[left,midi-1][midi,right]来分区

由于midi是整形相除的结果,所以存在数据丢失的情况,若一个以区间[2,3]为例,midi=2;

则此时再按照midi分区,右区间仍然为[2,3],程序将陷入无限递归从而崩溃,而如果按照[left,midi][midi+1,right]来区分区间,则右区间为[3,3],满足递归条件就返回了,不会导致程序出错

非递归归并

思路:
使用循环直接模拟归并合并的过程

理想数组思路图解(数据个数等于gap)

越界问题解析:

参考代码:

//归并排序非递归
void MergeSortNonR(int* arr, int n)
{//循环模拟int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail!");return;}//两组begin,end分别表示归并的左右两组int begin1, end1;int begin2, end2;int gap = 1;while (gap < n){for (int i = 0; i < n; i += gap * 2){//i为每次比较的左右两组,最左边的起始位置begin1 = i;end1 = i + gap - 1;begin2 = i + gap;end2 = i + 2 * gap - 1;int j = i;//printf("[%d,%d][%d,%d]", begin1, end1, begin2, end2);if (begin2 >= n)break;if (end2 >= n)end2 = n - 1;while (begin1 <= end1 && begin2 <= end2){if (arr[begin1] <= arr[begin2])//=保证稳定性tmp[j++] = arr[begin1++];elsetmp[j++] = arr[begin2++];}//printf(" ");while (begin1 <= end1)tmp[j++] = arr[begin1++];while (begin2 <= end2)tmp[j++] = arr[begin2++];//每归并一组左右区间,就拷贝一次memcpy(arr + i, tmp + i, sizeof(int) * (end2 - i + 1));}//memcpy(arr, tmp, sizeof(int) * (n - 1));gap *= 2;//printf("\n");}free(tmp);tmp = NULL;
}

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)(额外开辟空间)
  4. 稳定性:稳定

总结:

排序的介绍到这里就完结啦~

欢迎大家继续关注我的博客~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/473501.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码段数据段的划分

DPL DPL存储在段描述符中&#xff0c;规定访问该段的权限级别(Descriptor Privilege Level) CPL CPL是当前进程的权限级别(Current Privilege Level)&#xff0c;是当前正在指向的代码段所在段的成绩&#xff0c;也就是CS段的DPL RPL RPL说明的是进程对段访问的请求权限(Re…

Essential Cell Biology--Fifth Edition--Chapter one (8)

1.1.4.6 The Cytoskeleton [细胞骨架] Is Responsible for Directed Cell Movements 细胞质基液不仅仅是一种无结构的化学物质和细胞器的混合物[soup]。在电子显微镜下&#xff0c;我们可以看到真核细胞的细胞质基液是由长而细的丝交叉而成的。通常[Frequently]&#xff0c;可…

开源科学工程技术软件介绍 – EDA工具KLayout

link 今天向各位知友介绍的 KLayout是一款由德国团队开发的开源EDA工具。 KLayout是使用C开发的&#xff0c;用户界面基于Qt。它支持Windows、MacOS和Linux操作系统。安装程序可以从下面的网址下载&#xff1a; https://www.klayout.de/build.html KLayout图形用户界面&…

【设计模式】行为型模式(五):解释器模式、访问者模式、依赖注入

《设计模式之行为型模式》系列&#xff0c;共包含以下文章&#xff1a; 行为型模式&#xff08;一&#xff09;&#xff1a;模板方法模式、观察者模式行为型模式&#xff08;二&#xff09;&#xff1a;策略模式、命令模式行为型模式&#xff08;三&#xff09;&#xff1a;责…

(长期更新)《零基础入门 ArcGIS(ArcMap) 》实验一(下)----空间数据的编辑与处理(超超超详细!!!)

续上篇博客&#xff08;长期更新&#xff09;《零基础入门 ArcGIS(ArcMap) 》实验一&#xff08;上&#xff09;----空间数据的编辑与处理&#xff08;超超超详细&#xff01;&#xff01;&#xff01;&#xff09;-CSDN博客 继续更新 本篇博客内容为道路拓扑检查与修正&#x…

Unity3D 完整直升机控制器(虚拟仿真级别)

采用了MVC框架&#xff0c;以四轴驱动的方式对直升机的启动、飞行做了仿真模拟&#xff0c;包括但不限于参数设置、启动发动机和旋翼、数据显示、HUD、UI、升降、水平移动、转弯等。 文末有完整的工程资源链接。 1.旋翼 直升机飞行过程中&#xff0c;有顶部的主旋翼和尾部的尾…

yum工具的学习

Linux下安装软件的方法 1.源代码安装 2.rmp包安装 3.包管理器进行安装 --- yum/apt Linux下载软件的过程 操作系统的好坏评估 -- 生态问题 yum具体操作 Linux软件安装所有人都能用&#xff0c;是以other的身份去执行可执行程序 文件拷贝&#xff08;sudo&#xff09;-- &g…

Linux:进程的优先级 进程切换

文章目录 前言一、进程优先级1.1 基本概念1.2 查看系统进程1.3 PRI和NI1.4 调整优先级1.4.1 top命令1.4.2 nice命令1.4.3 renice命令 二、进程切换2.1 补充概念2.2 进程的运行和切换步骤&#xff08;重要&#xff09; 二、Linux2.6内核进程O(1)调度队列&#xff08;重要&#x…

MongoDB在现代Web开发中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 MongoDB在现代Web开发中的应用 MongoDB在现代Web开发中的应用 MongoDB在现代Web开发中的应用 引言 MongoDB 概述 定义与原理 发展…

爬取链家二手房房价数据存入mongodb并进行分析

感谢您的关注&#xff01;需要完整源码评论区获取~ 【实验目的】 1. 使用 python 将爬虫数据存入 mongodb&#xff1b; 2. 使用 python 读取 mongodb 数据并进行可视化分析。 【实验原理】 MongoDB 是文档数据库&#xff0c;采用 BSON 的结构来存储数据。在文档中可嵌套其…

Solana 区块链的技术解析及未来展望 #dapp开发#公链搭建

随着区块链技术的不断发展和应用场景的扩展&#xff0c;性能和可拓展性成为各大公链竞争的关键因素。Solana&#xff08;SOL&#xff09;因其高吞吐量、低延迟和低成本的技术特性&#xff0c;在众多区块链项目中脱颖而出&#xff0c;被誉为“以太坊杀手”之一。本文将从技术层面…

Vue通过file控件上传文件到Node服务器

功能&#xff1a; 多文件同步上传、拖动上传、实时上传进度条、上传前的删除文件、原生file控件的美化 搁置的功能: 取消上传(上传过程中取消,即取消网络请求abort)、上传文件夹、大文件切片、以及很多限制条件未处理(重复上传、文件格式。。。) bug: 文件总大小(。。。竟然从d…

Element-ui Select选择器自定义搜索方法

效果图 具体实现 <template><div class"home"><el-selectref"currencySelect"v-model"currency"filterable:spellcheck"false"placeholder"请选择":filter-method"handleCurrencyFilter"change&q…

JS的学习与使用

JS的学习与使用 一 什么是Javascript&#xff1f; Javascript是一门跨平台&#xff0c;面向对象的脚本语言&#xff0c;是用来控制网页行为的&#xff0c;它能使网页可以交互 java与Javascript是完全不同的语言&#xff0c;不论是概念还是设计&#xff0c;但是基础语法类似 E…

Docker:查看镜像里的文件

目录 背景步骤1、下载所需要的docker镜像2、创建并运行临时容器3、停止并删除临时容器 背景 在开发过程中&#xff0c;为了更好的理解和开发程序&#xff0c;有时需要确认镜像里的文件是否符合预期&#xff0c;这时就需要查看镜像内容 步骤 1、下载所需要的docker镜像 可以使…

【网络安全 | 漏洞挖掘】通过密码重置污染实现账户接管

未经许可,不得转载。 文章目录 密码重置污染攻击漏洞挖掘的过程目标选择与初步测试绕过 Cloudflare 的尝试发现两个域名利用 Origin 头部污染实现账户接管攻击流程总结在今天的文章中,我们将深入探讨一种 账户接管 漏洞,并详细分析如何绕过 Cloudflare 的保护机制,利用密码…

Redis 5 种基本数据类型详解

Redis 共有 5 种基本数据类型&#xff1a;String&#xff08;字符串&#xff09;、List&#xff08;列表&#xff09;、Set&#xff08;集合&#xff09;、Hash&#xff08;散列&#xff09;、Zset&#xff08;有序集合&#xff09;。 这 5 种数据类型是直接提供给用户使用的&…

AI 提示词(Prompt)入门 十:最佳实践|详细询问,提供细节!

1、原则解释 当与 ChatGPT 交流时&#xff0c;提供具体和详细的信息非常重要。 这样做可以帮助 ChatGPT 更准确地理解你的需求和上下文&#xff0c;从而生成更相关和有用的回答 明确的信息可以包括具体的问题背景、相关领域的说明、你所期望的答案类型等。 2、如何实践 明…

数据库的隔离机制---对MySQL 默认隔离级别的理解

参考&#xff1a; 脏读、幻读和不可重复读_脏读 ​​​​​​ 全网最详细MVCC讲解&#xff0c;一篇看懂 - 知乎全网最详细MVCC讲解&#xff0c;一篇看懂 - 知乎 面试官&#xff1a;MySQL 的默认隔离级别是什么?可以解决幻读问题吗&#xff1f; 目录 一、脏读、幻读、不可…

UNI-APP小程序答题功能开发(左右滑动,判断,填空,问答,答题卡,纠错,做题倒计时等)

原博&#xff1a;uni-app小程序答题功能开发(左右滑动,判断,填空,问答,答题卡,纠错,做题倒计时等)_uniapp答题模板-CSDN博客 标签&#xff1a; 小程序 uni-app 模板链接:答题模板 html部分 这里没啥好说的,就是根据不同的状态显示不同的内容 <template><view>…