【分布式知识】MapReduce详细介绍

文章目录

    • MapReduce概述
      • 1. MapReduce编程模型
        • Map阶段
        • Reduce阶段
      • 2. Shuffle和Sort阶段
      • 3. MapReduce作业的执行流程
      • 4. MapReduce的优化和特性
      • 5. MapReduce的配置和调优
    • MapReduce局限性
    • 相关文献

MapReduce概述

MapReduce是一个分布式计算框架,它允许用户编写可以在大规模集群上并行处理大数据集的应用程序。MapReduce模型由两个主要的函数组成:Map和Reduce,它们分别对应数据处理的两个阶段。以下是MapReduce的详细说明:

map-reduce

1. MapReduce编程模型

Map阶段
  • 输入:Map阶段的输入通常是一组键值对(key-value pairs)。
  • 处理:用户编写的Map函数对输入数据进行处理。Map函数读取输入的键值对,执行业务逻辑,然后输出中间键值对。
  • 输出:Map函数的输出是一组中间键值对,这些输出将作为Reduce函数的输入。
Reduce阶段
  • 输入:Reduce阶段的输入是Map阶段输出的所有中间键值对。
  • 处理:用户编写的Reduce函数对具有相同键的所有中间值进行处理。Reduce函数接收一个键和一组值,执行业务逻辑,然后输出最终结果。
  • 输出:Reduce函数的输出是一组最终的键值对,这些结果通常被写入到分布式文件系统(如HDFS)中。

2. Shuffle和Sort阶段

在Map和Reduce阶段之间,MapReduce框架自动执行Shuffle和Sort操作,这个过程对用户是透明的。

  • Shuffle:这个过程涉及将Map输出的数据传输到Reduce任务。Shuffle确保每个Reduce任务接收到所有属于其处理的键值对。
  • Sort:在数据传输给Reduce任务之前,MapReduce框架会对每个Reduce任务的数据进行排序,确保具有相同键的值被分组在一起。

3. MapReduce作业的执行流程

  1. 作业提交:用户提交一个MapReduce作业到集群。
  2. 任务调度:作业被分割成多个Map任务和Reduce任务,由集群的资源管理器进行调度。
  3. Map任务执行:每个Map任务处理输入数据的一个分片,生成中间键值对。
  4. Shuffle和Sort:Map任务的输出被Shuffle和Sort,为Reduce任务准备数据。
  5. Reduce任务执行:Reduce任务处理排序后的中间数据,生成最终结果。
  6. 输出结果:Reduce任务的输出被写入到分布式文件系统或其它存储系统中。

4. MapReduce的优化和特性

  • 数据局部性:MapReduce尝试将计算移动到数据所在的位置,以减少网络传输。
  • 容错性:MapReduce框架能够处理节点故障,通过重新执行失败的任务来确保作业的完成。
  • 扩展性:MapReduce设计用于在成百上千的节点上运行,能够处理PB级别的数据集。
  • 高吞吐量:通过并行处理和优化的数据传输,MapReduce可以实现高吞吐量的数据加工。

5. MapReduce的配置和调优

  • 分区(Partitioning):用户可以通过实现自定义分区器来控制数据如何分配给不同的Reduce任务。
  • 合并(Combining):在Map阶段,用户可以定义一个Combiner函数来减少网络传输的数据量。
  • 资源管理:用户可以配置Map和Reduce任务的内存使用量,以及其他资源需求。

MapReduce是一个强大的工具,但它也有一些局限性,比如不适合实时数据处理,以及对于复杂的数据处理流程可能不够灵活。因此,许多新的框架和工具(如Apache Spark)被开发出来,以提供更丰富的数据处理能力。尽管如此,MapReduce仍然是大数据处理领域的一个基础概念,并且它的许多原则和模式在新的技术中得到了延续。

MapReduce局限性

MapReduce是一种编程模型和处理框架,用于在大规模集群上并行处理大数据集。尽管MapReduce在大数据处理领域有着广泛的应用,但它也存在一些局限性:

  1. 实时计算性能差:MapReduce主要适用于离线数据处理,不适合需要实时或近实时处理的场景。它无法像传统的数据库系统那样在毫秒或秒级别内返回结果。

  2. 不适合流式计算:流式计算要求数据是动态的,而MapReduce设计上是针对静态数据集的。因此,MapReduce不适合处理持续不断流入的数据。

  3. 高延迟:MapReduce的数据处理流程通常涉及多个阶段,包括Map、Shuffle和Reduce,这导致整个处理过程的延迟较高,不适合需要快速响应的交互式应用。

  4. 磁盘I/O开销大:在MapReduce中,中间结果需要写入磁盘,这可能导致大量的I/O操作,成为性能瓶颈。

  5. 不适合复杂计算:MapReduce框架主要提供Map和Reduce两种操作,对于复杂的计算任务,可能需要多个MapReduce作业串行运行,这增加了开发和维护的复杂性。

  6. 资源利用率低:MapReduce作业通常需要等待所有Map任务完成后,Reduce任务才能开始,这种模式可能导致资源利用率不高,特别是在数据倾斜或某些任务执行时间较长时。

  7. 内存使用不足:MapReduce主要依赖磁盘存储,而不是内存。这限制了处理速度,因为磁盘I/O远慢于内存访问。相比之下,新的框架如Spark利用内存计算,大大提高了处理速度。

  8. 容错机制:虽然MapReduce具有容错性,但它的处理方式可能在节点故障时导致较高的计算成本,尤其是在需要重新计算失败任务时。

  9. 过于底层:MapReduce提供的抽象层次较低,对于非技术人员或数据分析师来说,编写MapReduce程序可能较为困难,不如SQL等更高级的抽象易于使用。

  10. 不适合迭代计算:某些算法,如机器学习的模型训练,需要状态共享或参数间有依赖,MapReduce不适合这类需要迭代处理的计算任务。

由于这些局限性,MapReduce可能不适用于所有类型的数据处理任务,特别是那些需要低延迟、高吞吐量、复杂计算或实时处理的场景。因此,许多新的框架和工具,如Apache Spark,被开发出来以提供更灵活、更高效的大数据处理能力。

相关文献

【大数据】一文教你看懂什么是Hadoop

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/450935.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【热门】智慧果园管理系统解决方案

随着科技的进步,原有农业种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。经过多年的实践,人们总结出一种新的种植方法——温室农业,即“用人工设施控制环境因素,使作物获得最适宜的生长条件,从而延长生产季节,获得最佳的产出”。这种农业生产方式…

scala 类的继承

继承的定义 idea实例 语法 重写 重写:在子类中重新定义父类的同名方法 idea实例 多态 多态:传入的对象不同,调用的方法的效果就不同! 原理:参数是父类类型 idea实例 构造器

使用开源的 Vue 移动端表单设计器创建表单

FcDesigner Vant 版是一款基于 Vue3.0 的移动端低代码可视化表单设计器工具,通过数据驱动表单渲染。可以通过拖拽的方式快速创建表单,提高开发者对表单的开发效率,节省开发者的时间。 源码下载 | 演示地址 | 帮助文档 本项目采用 Vue3.0 和 …

3D医学影像开发入门<二>:VS2019+Qt5.15.2+VTK9.3.1编译及环境配置

VTK(Visualization Toolkit)是一个开源的、跨平台的三维可视化开发库,用于处理和可视化三维数据。它提供了一系列算法和工具,用于创建、操作和渲染复杂的三维图形,并支持多种数据表示方式,包括点、线、面、…

Spring Boot知识管理系统:用户体验设计

6系统测试 6.1概念和意义 测试的定义:程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为: 目的:发现程序的错误; 任务:通过在计算机上执行程序,暴露程序中潜在的错误。 另一个…

Pycharm下载安装教程(详细步骤)+汉化设置教程

今天讲解的是Pycharm安装教程和配置汉化设置,希望能够帮助到大家。 创作不易,还请各位同学三连点赞!!收藏!!转发!!! 对于刚入门学习Python还找不到方向的小伙伴可以试试…

部署私有仓库以及docker web ui应用

官方地址:https://hub.docker.com/_/registry/tags 一、拉取registry私有仓库镜像 docker pull registry:latest 二、运⾏容器 docker run -itd -v /home/dockerdata/registry:/var/lib/registry --name "pri_registry1" --restartalways -p 5000:5000 …

Android取证简介(翻译)

在此文中,我们将探讨 Android 取证、获取 Android 设备的过程、反取证技术以及从 Android 设备映像分析和恢复已删除文件的实际示例。 # 本文中使用的关键术语 采集(Acquisition) : 在数字取证调查期间收集敏感数据 取证健全性(Forensically Soundnes…

【linux】Microsoft Edge 的 Bookmarks 文件存储位置

在 Linux 系统中,Microsoft Edge 的书签(Bookmarks)文件存储在用户的配置目录下。具体路径通常如下: ~/.config/microsoft-edge/Default/Bookmarks说明: 路径解释: ~ 表示当前用户的主目录。.config 是一个…

pinia学习笔记(1.0)

首先贴出官网地址:开始 | Pinia pinia作为Vue3项目中常用的状态管理工具,正逐渐取代vuex,现从0到1自己搭建pinia仓库。 首先,安装pinia,使用包管理器工具(npm,pnpm,yarn,Bun等都可以) 安装成…

UE5运行时动态加载场景角色动画任意搭配-相机及运镜(二)

通过《MMD模型及动作一键完美导入UE5》系列文章,我们可以把外部场景、角色、动画资产导入UE5,接下来我们将实现运行时动态加载这些资产,并任意组合搭配。 1、运行时播放相机动画 1、创建1个BlueprintActor,通过这个蓝图动态创建1个LevelSequence,并Play 2、将这个Bluep…

linux基本环境配置 安装Docker RedisMysql

目录 一、安装docker 1、卸载系统之前的docker 2、安装Docker-CE 3、启动docker 4、设置docker开机自启 5、root测试docker命令 6、配置docker镜像加速 二、Docker安装Mysql 1、下载镜像文件 2、创建实例并启动 3、修改MySQL字符集 4、设置容器自启动 三、Docker安…

CTFHUB技能树之SQL——MySQL结构

开启靶场,打开链接: 先判断一下是哪种类型的SQL注入: 1 and 11# 正常回显 1 and 12# 回显错误,说明是整数型注入 判断一下字段数: 1 order by 2# 正常回显 1 order by 3# 回显错误,说明字段数是2列 知道…

Vue3嵌套导航相对路径问题

有如下的页面设计,页面上方第一次导航,两个菜单,首页和新闻 点击新闻,内容里面嵌套一个左侧和右侧,左侧有4条新闻,点击某一条新闻,右侧显示详情 代码如下: ​ File Path: d:\hello\…

【AIGC】ChatGPT提示词Prompt高效编写模式:思维链、Self-Consistency CoT与Zero-Shot CoT

博客主页: [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 💯前言💯思维链 (Chain of Thought, CoT)如何工作应用实例优势结论 💯一致性思维链 (Self-Consistency CoT)如何工作应用实例优势结论 💯零样本思维链 (Ze…

详细分析Redisson分布式锁中的renewExpiration()方法

目录 一、Redisson分布式锁的续期 整体分析 具体步骤和逻辑分析 为什么需要递归调用? 定时任务的生命周期? 一、Redisson分布式锁的续期 Redisson是一个基于Redis的Java分布式锁实现。它允许多个进程或线程之间安全地共享资源。为了实现这一点&…

51单片机数码管循环显示0~f

原理图&#xff1a; #include <reg52.h>sbit dulaP2^6;//段选信号 sbit welaP2^7;//位选信号unsigned char num;//数码管显示的数字0~funsigned char code table[]{ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71};//定义数码管显…

web前端-----html5----用户注册

以改图为例 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>用户注册</title> </hea…

彩色图片转灰度图

目录 原始彩色图片灰度图片代码 原始彩色图片 这张图片是原始的彩色图片&#xff0c;我们可以看到它的形状是 cloud is shape: (563, 703, 3)。 灰度图片 这张图片是将原始彩色图片转换为灰度后的图片&#xff0c;它的形状是 cloud_gary is shape: (563, 703)。 代码 以下是…

(C/C++)文件

目录 1. 为什么使用文件 2. 什么是文件 2.1 程序文件 2.2 数据文件 3. 文件的打开和关闭 3.1 文件指针 3.2 文件的打开和关闭 4. 文件的顺序读写 fputc fgetc fputs fgets fprintf fscanf fwrite fread sprintf和sscanf snprintf ​编辑 4对比一组函数(prin…