【STM32 HAL库】MPU6050姿态解算 卡尔曼滤波

【STM32 HAL库】MPU6050姿态解算 卡尔曼滤波

  • 前言
  • MPU6050寄存器
  • 代码详解
    • mpu6050.c
    • mpu6050.h
  • 使用说明

前言

本篇文章基于卡尔曼滤波的原理详解与公式推导,来详细的解释下如何使用卡尔曼滤波来解算MPU6050的姿态
参考资料:Github_mpu6050

MPU6050寄存器

我们简单介绍下MPU6050驱动里设计到的寄存器,详情见MPU-60X0寄存器手册
Who Am I 寄存器
为数不多的默认值不为0的寄存器,其默认值为0x68,也即MPU6050的设备地址,通过读取该寄存器的值来判断识别到的设备是否是MPU6050
在这里插入图片描述
Power Management 1 寄存器
通过该寄存器配置电源模式、时钟源选择、设备复位和睡眠模式等功能。
在这里插入图片描述
Sample Rate Divider 寄存器
采样速率分频器,通过该寄存器设置分频系数,配置 MPU6050 数据输出速率。
在这里插入图片描述
CONFIGURATION 寄存器
GYROSCOPE CONFIGURATIONACCELEROMETER CONFIGURATION 寄存器,用来配置陀螺仪、加速度计参数
在这里插入图片描述
详情见MPU-60X0寄存器手册

MEASUREMENT 寄存器
用来存放加速度计、温度计、陀螺仪测量到的原始数据
在这里插入图片描述
详情见MPU-60X0寄存器手册

代码详解

mpu6050.c

/** mpu6050.c**  Created on: Nov 13, 2019*      Author: Bulanov Konstantin**  Contact information*  -------------------** e-mail   :  leech001@gmail.com*//** |---------------------------------------------------------------------------------* | Copyright (C) Bulanov Konstantin,2021* |* | This program is free software: you can redistribute it and/or modify* | it under the terms of the GNU General Public License as published by* | the Free Software Foundation, either version 3 of the License, or* | any later version.* |* | This program is distributed in the hope that it will be useful,* | but WITHOUT ANY WARRANTY; without even the implied warranty of* | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the* | GNU General Public License for more details.* |* | You should have received a copy of the GNU General Public License* | along with this program.  If not, see <http://www.gnu.org/licenses/>.* |* | Kalman filter algorithm used from https://github.com/TKJElectronics/KalmanFilter* |---------------------------------------------------------------------------------*/#include <math.h>
#include "mpu6050.h"#define RAD_TO_DEG 57.295779513082320876798154814105		//用以弧度转角度,角度 = 弧度 × (180/π),其中 180/π 的值约为 57.2958#define WHO_AM_I_REG 					0x75				// MPU6050 的 WHO_AM_I 寄存器地址。通过读取该寄存器的值,如果返回 0x68,则表示该 I2C 设备是 MPU6050 传感器。
#define PWR_MGMT_1_REG 				0x6B  			// MPU6050 的 Power Management 1 寄存器地址 (电源管理 1 寄存器),用于配置电源模式、时钟源选择、设备复位和睡眠模式等功能。
#define SMPLRT_DIV_REG 				0x19     		// MPU6050 的 Sample Rate Divider 寄存器地址 (采样速率分频器),通过该寄存器设置分频系数,配置 MPU6050 数据输出速率。
#define ACCEL_CONFIG_REG 			0x1C     		// MPU6050 的 ACCEL_CONFIG 寄存器地址 (加速度计配置寄存器),用于设置加速度计的量程范围(例如 ±2g、±4g 等)。
#define ACCEL_XOUT_H_REG 			0x3B     		// MPU6050 的加速度计 X 轴高位数据寄存器地址,用于读取 X 轴加速度高字节数据。
#define TEMP_OUT_H_REG 				0x41      	// MPU6050 的温度传感器高位数据寄存器地址,用于读取温度的高字节数据。
#define GYRO_CONFIG_REG 			0x1B      	// MPU6050 的 GYRO_CONFIG 寄存器地址 (陀螺仪配置寄存器),用于设置陀螺仪的量程范围(例如 ±250°/s、±500°/s 等)。
#define GYRO_XOUT_H_REG 			0x43      	// MPU6050 的陀螺仪 X 轴高位数据寄存器地址,用于读取 X 轴陀螺仪角速度的高字节数据。// Setup MPU6050
#define MPU6050_ADDR 0xD0  		// MPU6050 的补位后的 8 位地址,MPU6050的 7 位地址为 110 100x (0x68 或 0x69),最低位 x 取决于 AD0 引脚状态。I2C 通信时,左移一位并在最低位加 0(写)或 1(读),形成 8 位地址。以写为例,MPU6050 地址为 1101 0000 (0xD0) 表示写操作
const uint16_t i2c_timeout = 100;  // I2C 通信超时时间,单位为毫秒。
const double Accel_Z_corrector = 14418.0;uint32_t timer;Kalman_t KalmanX = {.Q_angle = 0.001f,.Q_bias = 0.003f,.R_measure = 0.03f};Kalman_t KalmanY = {.Q_angle = 0.001f,.Q_bias = 0.003f,.R_measure = 0.03f,
};uint8_t MPU6050_Init(I2C_HandleTypeDef *I2Cx)
{uint8_t check;		// 存储从 WHO_AM_I 寄存器读取到的设备 ID,实际上是该寄存器的值0x68(该寄存器默认值为 0x68 (104),也即 MPU6050 的地址uint8_t Data;HAL_I2C_Mem_Read(I2Cx, MPU6050_ADDR, WHO_AM_I_REG, 1, &check, 1, i2c_timeout);		// 通过 I2Cx 访问 MPU6050 的 WHO_AM_I 寄存器,读取 1 字节数据到 check,超时时间为 i2c_timeout。if (check == 104) // 检验 check 的值 是否为 0x68{// 设置 Power Management 1 寄存器 (电源管理1寄存器),将其第7位 置1 (1000 0000) 进行设备复位,防止数据残留Data = 0x80;HAL_I2C_Mem_Write(I2Cx, MPU6050_ADDR, PWR_MGMT_1_REG, 1, &Data, 1, i2c_timeout);// 设置 Power Management 1 寄存器 (电源管理1寄存器),将其所有位置0 (0000 0000) ,进行唤醒Data = 0;HAL_I2C_Mem_Write(I2Cx, MPU6050_ADDR, PWR_MGMT_1_REG, 1, &Data, 1, i2c_timeout);// 设置 Sample Rate Divider 寄存器 (采样速率分频器),采样速率 = 1kHz / ( 0X04 + 1) = 200HzData = 0x04;HAL_I2C_Mem_Write(I2Cx, MPU6050_ADDR, SMPLRT_DIV_REG, 1, &Data, 1, i2c_timeout);//设置 ACCEL_CONFIG 寄存器 (加速度计配置 Accelerometer Configuration )// 关闭X Y Z轴的自检功能,配置量程为(-2g,+2g) XA_ST=0,YA_ST=0,ZA_ST=0, FS_SEL=0 -> +- 2gData = 0x00;HAL_I2C_Mem_Write(I2Cx, MPU6050_ADDR, ACCEL_CONFIG_REG, 1, &Data, 1, i2c_timeout);//设置 GYRO_CONFIG 寄存器 (陀螺仪配置 Gyroscopic Configuration )// 关闭X Y Z轴的自检功能,并配置量程为 (-250 °/s,+250 °/s) XG_ST=0, YG_ST=0, ZG_ST=0 , FS_SEL=0 -> ±250 °/sData = 0x00;HAL_I2C_Mem_Write(I2Cx, MPU6050_ADDR, GYRO_CONFIG_REG, 1, &Data, 1, i2c_timeout);return 0;		//返回0,表示 MPU6050 正常}return 1;		//返回1,表示 MPU6050 异常
}void MPU6050_Read_Accel(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct)
{uint8_t Rec_Data[6];	//存储读取到的 6 字节加速度计原始数据// 通过 I2Cx 访问 MPU6050 的 Accelerometer Measurements 寄存器组中的 ACCEL_XOUT_H_REG 寄存器(加速度计X轴加速度高字节 寄存器),读取 6 字节数据( X轴加速度的高字节 ---> Z轴加速度的低字节 )到 Rec_Data ,超时时间为 i2c_timeout。HAL_I2C_Mem_Read(I2Cx, MPU6050_ADDR, ACCEL_XOUT_H_REG, 1, Rec_Data, 6, i2c_timeout);//将读取到的存储在 Rec_Data[6] 中的原始数据 分离转换为 X、Y、Z轴加速度的 16 位有符号整数DataStruct->Accel_X_RAW = (int16_t)(Rec_Data[0] << 8 | Rec_Data[1]);DataStruct->Accel_Y_RAW = (int16_t)(Rec_Data[2] << 8 | Rec_Data[3]);DataStruct->Accel_Z_RAW = (int16_t)(Rec_Data[4] << 8 | Rec_Data[5]);/*** 将原始值转换为以 'g' 为单位的加速度值。根据 FS_SEL 配置来进行换算,这里 FS_SEL = 0,对应量程为 ±2g,因此需要将原始值除以 16384.0,来得到加速度值。 根据 Accelerometer Measurements 加速度计测量寄存器组中的 AFS_SEL 配置中的描述,可知量程对应的除数更多细节请参考 ACCEL_CONFIG 与 Accelerometer Measurements寄存器的配置。  ****/// 将原始值转换为 g 为单位的加速度DataStruct->Ax = DataStruct->Accel_X_RAW / 16384.0;  // X 轴加速度DataStruct->Ay = DataStruct->Accel_Y_RAW / 16384.0;  // Y 轴加速度DataStruct->Az = DataStruct->Accel_Z_RAW / Accel_Z_corrector;		//Z 轴加速度 (由于Z轴加速度计的值会受重力、传感器零飘、传感器精度与校准的影响,导致在水平放置时,Accel_Z_RAW 不为 2g 量程对应的理论值 16384,而是实际值。修正参数就是根据实际情况测出的,用来矫正零飘和其他影响的校正因子
}void MPU6050_Read_Gyro(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct)
{uint8_t Rec_Data[6];		//存储读取到的 6 字节陀螺仪计原始数据// 通过 I2Cx 访问 MPU6050 的 Gyroscope Measurements 寄存器组中的 GYRO_XOUT_H_REG 寄存器(陀螺仪 X 轴角速度高字节 寄存器),读取 6 字节数据( X 轴角速度的高字节 ---> Z 轴角速度的低字节 )到 Rec_Data ,超时时间为 i2c_timeout。HAL_I2C_Mem_Read(I2Cx, MPU6050_ADDR, GYRO_XOUT_H_REG, 1, Rec_Data, 6, i2c_timeout);//将读取到的存储在 Rec_Data[6] 中的原始数据 分离转换为 X、Y、Z轴角速度的 16 位有符号整数DataStruct->Gyro_X_RAW = (int16_t)(Rec_Data[0] << 8 | Rec_Data[1]);DataStruct->Gyro_Y_RAW = (int16_t)(Rec_Data[2] << 8 | Rec_Data[3]);DataStruct->Gyro_Z_RAW = (int16_t)(Rec_Data[4] << 8 | Rec_Data[5]);/*** 将原始值转换为度每秒(dps,degrees per second)。根据 FS_SEL 的配置选择适当的比例系数。这里假设 FS_SEL = 0,对应量程为 ±250 °/s,因此需要将原始值除以 131.0 来得到角速度(dps)。根据 Gyroscope Measurements 角速度计测量寄存器组中的 FS_SEL 配置中的描述,可知量程对应的除数更多细节请参考 GYRO_CONFIG 与 Gyroscope Measurements寄存器的配置。  ****/// 将原始值转换为 dps	为单位的加速度DataStruct->Gx = DataStruct->Gyro_X_RAW / 131.0;  // X 轴角速度DataStruct->Gy = DataStruct->Gyro_Y_RAW / 131.0;  // Y 轴角速度DataStruct->Gz = DataStruct->Gyro_Z_RAW / 131.0;  // Z 轴角速度
}void MPU6050_Read_Temp(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct)
{uint8_t Rec_Data[2];  // 用于存储从温度寄存器读取的 2 字节数据int16_t temp;  // 用于存储拼接后的 16 位原始温度数据// 从 Temperature Measurement 温度测量寄存器组 中的 TEMP_OUT_H 寄存器开始,读取 2 字节数据(高字节和低字节)HAL_I2C_Mem_Read(I2Cx, MPU6050_ADDR, TEMP_OUT_H_REG, 1, Rec_Data, 2, i2c_timeout);// 将读取到的高字节和低字节拼接为 16 位的有符号整数temp = (int16_t)(Rec_Data[0] << 8 | Rec_Data[1]);// 将原始温度值转换为摄氏温度 (详情见 Temperature Measurement// 转换公式:温度值(°C) = (原始值 / 340.0) + 36.53	DataStruct->Temperature = (float)((int16_t)temp / (float)340.0 + (float)36.53);
}/*** @brief 读取 MPU6050 所有传感器数据,并使用卡尔曼滤波器计算角度* * 该函数通过 I2C 接口读取 MPU6050 传感器的加速度计、陀螺仪和温度的数据,* 并使用卡尔曼滤波器对预测角度与测量角度(加速度计和陀螺仪数据)进行融合,以计算俯仰角(pitch)和滚转角(roll)。** @param I2Cx I2C 句柄,用于通过 I2C 接口与 MPU6050 通信* @param DataStruct 指向 MPU6050_t 结构体的指针,存储读取到的原始传感器数据以及处理后的数据(如加速度、角速度、角度等)*/
void MPU6050_Read_All(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct)
{uint8_t Rec_Data[14];   // 用于存储从 MPU6050 读取的 14 字节数据int16_t temp;           // 临时变量,用于存储原始温度数据//1.通过 I2C 接口从 MPU6050 读取 14 字节加速度、温度、角速度数据HAL_I2C_Mem_Read(I2Cx, MPU6050_ADDR, ACCEL_XOUT_H_REG, 1, Rec_Data, 14, i2c_timeout);//2.解析数据// 解析加速度计数据DataStruct->Accel_X_RAW = (int16_t)(Rec_Data[0] << 8 | Rec_Data[1]);DataStruct->Accel_Y_RAW = (int16_t)(Rec_Data[2] << 8 | Rec_Data[3]);DataStruct->Accel_Z_RAW = (int16_t)(Rec_Data[4] << 8 | Rec_Data[5]);// 解析温度数据temp = (int16_t)(Rec_Data[6] << 8 | Rec_Data[7]);// 解析陀螺仪数据DataStruct->Gyro_X_RAW = (int16_t)(Rec_Data[8] << 8 | Rec_Data[9]);DataStruct->Gyro_Y_RAW = (int16_t)(Rec_Data[10] << 8 | Rec_Data[11]);DataStruct->Gyro_Z_RAW = (int16_t)(Rec_Data[12] << 8 | Rec_Data[13]);//3.转换解析后的数据:  原始数据 --> 实际意义数据// 将原始加速度计数据 ---> 以 "g" 为单位的加速度值DataStruct->Ax = DataStruct->Accel_X_RAW / 16384.0;DataStruct->Ay = DataStruct->Accel_Y_RAW / 16384.0;DataStruct->Az = DataStruct->Accel_Z_RAW / Accel_Z_corrector;// 将原始温度数据 ---> 摄氏温度DataStruct->Temperature = (float)((int16_t)temp / (float)340.0 + (float)36.53);// 将原始陀螺仪数据 ---> 角速度(以 "度每秒 (dps)" 为单位DataStruct->Gx = DataStruct->Gyro_X_RAW / 131.0;DataStruct->Gy = DataStruct->Gyro_Y_RAW / 131.0;DataStruct->Gz = DataStruct->Gyro_Z_RAW / 131.0;//4.卡尔曼滤波// 计算时间增量 dt,单位为秒double dt = (double)(HAL_GetTick() - timer) / 1000;  // 获取时间差(毫秒),转换为秒timer = HAL_GetTick();  // 更新计时器// 计算滚转角 rolldouble roll;  // 用于存储计算得到的滚转角(X 轴)double roll_sqrt = sqrt(DataStruct->Accel_X_RAW * DataStruct->Accel_X_RAW + DataStruct->Accel_Z_RAW * DataStruct->Accel_Z_RAW);if (roll_sqrt != 0.0){roll = atan(DataStruct->Accel_Y_RAW / roll_sqrt) * RAD_TO_DEG;  // 先计算出弧度制 roll ,再弧度转换为角度值}else{roll = 0.0;}// 计算俯仰角 pitchdouble pitch = atan2(-DataStruct->Accel_X_RAW, DataStruct->Accel_Z_RAW) * RAD_TO_DEG;// 如果俯仰角度变化过快(超过90度),防止角度跳变if ((pitch < -90 && DataStruct->KalmanAngleY > 90) || (pitch > 90 && DataStruct->KalmanAngleY < -90)){KalmanY.angle = pitch; DataStruct->KalmanAngleY = pitch;}else{// 卡尔曼滤波器更新俯仰角度 YDataStruct->KalmanAngleY = Kalman_getAngle(&KalmanY, pitch, DataStruct->Gy, dt);}// 如果俯仰角绝对值超过 90 度,则反转 X 轴的陀螺仪角速度,防止符号错误if (fabs(DataStruct->KalmanAngleY) > 90)DataStruct->Gx = -DataStruct->Gx;// 卡尔曼滤波器更新滚转角度 XDataStruct->KalmanAngleX = Kalman_getAngle(&KalmanX, roll, DataStruct->Gx, dt);
}/*** @brief 使用卡尔曼滤波,融合角度预测值与角度测量值,得到最优角度值* * 卡尔曼滤波通过结合系统的预测值和测量值,来修正角度和偏置的估计,减少噪声对结果的影响。* * @param Kalman 卡尔曼滤波器结构体指针,包含预测角度、预测偏置、角度协方差、偏置协方差、噪声协方差及协方差矩阵* @param newAngle 角度测量值(读取加速度计的三轴加速度分量,再计算反正切得到角度测量值)* @param newRate 角速度“实际“值(他只是可以看作角速度实际值,实际上是角速度测量值。只不过因陀螺仪精度问题,而有过程噪声。可以理解为匀变速直线运动的状态方程中必须有 速度v 的参与,这个 v 实际上也是测量值)* @param dt 时间间隔,两个传感器数据采样之间的时间差(秒)* @return double 滤波后的最优角度值*/double Kalman_getAngle(Kalman_t *Kalman, double newAngle, double newRate, double dt)
{
/*---------------------预测阶段--------------------------*/// 1. 预测角度// 角速度 = 陀螺仪角速度 - 陀螺仪偏置值 (得到无偏角速度)double rate = newRate - Kalman->bias;// 预测角度 = 前一时刻角速 + 时间间隔*角速度Kalman->angle += dt * rate;// 2. 预测协方差矩阵Kalman->P[0][0] += dt * (dt * Kalman->P[1][1] - Kalman->P[0][1] - Kalman->P[1][0] + Kalman->Q_angle); // 预测角度协方差Kalman->P[0][1] -= dt * Kalman->P[1][1];  // 预测角度和偏置的协方差Kalman->P[1][0] -= dt * Kalman->P[1][1];  // 预测偏置和角度的协方差Kalman->P[1][1] += Kalman->Q_bias * dt;   // 预测偏置协方差/*---------------------更新阶段--------------------------*/// 3. 更新卡尔曼增益// 总误差协方差 = 预测协方差 + 测量噪声协方差double S = Kalman->P[0][0] + Kalman->R_measure;// 卡尔曼增益 Kdouble K[2]; K[0] = Kalman->P[0][0] / S;  // 角度的卡尔曼增益K[1] = Kalman->P[1][0] / S;  // 偏置的卡尔曼增益// 4. 更新角度和偏置// 测量残差 = 测量值 - 预测值double y = newAngle - Kalman->angle;// 根据卡尔曼增益,更新角度和偏置的估计值,修正预测阶段的误差Kalman->angle += K[0] * y;  // 更新角度估计。Kalman->bias += K[1] * y;   // 更新偏置估计// 5. 更新协方差矩阵 Pdouble P00_temp = Kalman->P[0][0];double P01_temp = Kalman->P[0][1];Kalman->P[0][0] -= K[0] * P00_temp;  // 更新角度协方差Kalman->P[0][1] -= K[0] * P01_temp;  // 更新角度和偏置的协方差Kalman->P[1][0] -= K[1] * P00_temp;  // 更新偏置和角度的协方差Kalman->P[1][1] -= K[1] * P01_temp;  // 更新偏置协方差// 6. 返回滤波后的最优角度值return Kalman->angle;
};

mpu6050.h

/** mpu6050.h**  Created on: Nov 13, 2019*      Author: Bulanov Konstantin* 本头文件定义了用于操作 MPU6050 传感器的结构和函数,包括加速度计、陀螺仪、温度传感器的读取函数,* 以及用于角度计算的卡尔曼滤波算法。*/#ifndef INC_GY521_H_
#define INC_GY521_H_#endif /* INC_GY521_H_ */#include <stdint.h>
#include "i2c.h"/* * MPU6050 数据结构体* 该结构体保存从 MPU6050 传感器读取的原始加速度和原始陀螺仪数据* 以及经过处理后的加速度、角速度和温度数据*/
typedef struct
{int16_t Accel_X_RAW;   // X 轴加速度原始数据int16_t Accel_Y_RAW;   // Y 轴加速度原始数据int16_t Accel_Z_RAW;   // Z 轴加速度原始数据double Ax;             // X 轴加速度值(g)double Ay;             // Y 轴加速度值(g)double Az;             // Z 轴加速度值(g)int16_t Gyro_X_RAW;    // X 轴陀螺仪原始数据int16_t Gyro_Y_RAW;    // Y 轴陀螺仪原始数据int16_t Gyro_Z_RAW;    // Z 轴陀螺仪原始数据double Gx;             // X 轴角速度值(°/s)double Gy;             // Y 轴角速度值(°/s)double Gz;             // Z 轴角速度值(°/s)float Temperature;     // 传感器的温度(°C)double KalmanAngleX;   // X 轴的卡尔曼滤波计算角度double KalmanAngleY;   // Y 轴的卡尔曼滤波计算角度
} MPU6050_t;/* * 卡尔曼滤波器结构体* 用于根据 MPU6050 数据平滑地估算出角度,滤除噪声并提供更稳定的输出*/
typedef struct
{double Q_angle;    // 角度过程噪声协方差double Q_bias;     // 偏差过程噪声协方差double R_measure;  // 测量噪声协方差double angle;      // 当前估计角度double bias;       // 当前估计偏差double P[2][2];    // 误差协方差矩阵
} Kalman_t;// 初始化 MPU6050 传感器,配置 MPU6050 参数,返回 0 表示成功,1 表示失败
uint8_t MPU6050_Init(I2C_HandleTypeDef *I2Cx); // 读取 MPU6050 加速度计数据,更新到 mpu6050 结构体中
void MPU6050_Read_Accel(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct); // 读取 MPU6050 陀螺仪数据,更新到 mpu6050 结构体中
void MPU6050_Read_Gyro(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct); // 读取 MPU6050 温度数据,更新到 mpu6050 结构体中
void MPU6050_Read_Temp(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct); // 读取 MPU6050 的加速度计、陀螺仪和温度数据,并更新到 mpu6050 结构体中
void MPU6050_Read_All(I2C_HandleTypeDef *I2Cx, MPU6050_t *DataStruct); // 使用卡尔曼滤波器计算角度,根据新测得的角度和角速度更新滤波器,返回平滑的角度值
double Kalman_getAngle(Kalman_t *Kalman, double newAngle, double newRate, double dt);

使用说明

STEP1:复制mpu6050的.c .h到你的工程文件夹中,并add文件与编译路径

STEP2:Includes

#include "mpu6050.h"

STEP3:声明私有变量PV

/ * USER CODE BEGIN PV * /
MPU6050_t MPU6050;
/ * USER CODE END PV * /

STEP4:初始化MPU6050

void setup(void){while (MPU6050_Init(&hi2c1) == 1);
}

STEP5:调用函数读取并解析数据

void loop(void){MPU6050_Read_All(&hi2c1, &MPU6050);HAL_Delay (100);
}

经过卡尔曼滤波后得到的数据(最优估计)为MPU6050.KalmanAngleXMPU6050.KalmanAngleY
可以打印输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/451092.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言中的文件操作:从基础到深入底层原理

文件操作是几乎所有应用程序的重要组成部分&#xff0c;特别是在系统级编程中。C语言因其高效、灵活以及接近硬件的特点&#xff0c;成为了文件操作的理想选择。本文将全面深入地探讨C语言中的文件操作&#xff0c;从文件系统的概念到具体的文件操作函数&#xff0c;再到底层的…

外包干了2年,技术原地踏步。。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入南京某软件公司&#xff0c;干了接近2年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了2年的功能测试&…

020 elasticsearch7.10.2 elasticsearch-head kibana安装

文章目录 全文检索流程ElasticSearch介绍ElasticSearch应用场景elasticsearch安装允许远程访问设置vm.max_map_count 的值 elasticsearch-head允许跨域 kibana 商品数量超千万&#xff0c;数据库无法使用索引 如何使用全文检索&#xff1a; 使用lucene&#xff0c;在java中唯一…

Nginx(Linux):启动停止Nginx

目录 1、理解Nginx后台进程2、停止Nginx(方式一&#xff1a;使用信号源)2.1 获取master进程号2.1 设置信号源 3、停止Nginx(方式二&#xff1a;使用命令行) 1、理解Nginx后台进程 Nginx后台进程包含master和worker两类进程。 master进程&#xff1a;主要用来管理worker进程&am…

鸿蒙学习笔记--搭建开发环境及Hello World

文章目录 一、概述二、开发工具下载安装2.1 下载开发工具DevEco Studio NEXT2.2 安装DevEco Studio 三、启动软件四、第一个应用Hello World4.1 创建应用4.2 创建模拟器4.3 开启Hyper-v功能4.4 启动虚拟机 剑子仙迹 诗号&#xff1a;何须剑道争锋&#xff1f;千人指&#xff0c…

【Linux】:线程概念

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家带来线程概念相关代码和知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数…

9.存储过程安全性博客大纲(9/10)

存储过程安全性博客大纲 引言 在数据库系统中&#xff0c;存储过程是一种预先编写好的SQL代码集合&#xff0c;它被保存在数据库服务器上&#xff0c;可以通过指定的名称来调用执行。存储过程可以包含一系列的控制流语句&#xff0c;如IF条件语句、WHILE循环等&#xff0c;使…

智能汽车制造:海康NVR管理平台/工具EasyNVR多品牌NVR管理工具/设备实现无插件视频监控直播方案

一、背景介绍 近年来&#xff0c;随着网络在我国的普及和深化发展&#xff0c;企业的信息化建设不断深入&#xff0c;各行各业都加快了信息网络平台的建设&#xff0c;大多数单位已经或者正在铺设企业内部的计算机局域网。与此同时&#xff0c;网络也成为先进的新兴应用提供了…

【Git】基本操作+分支管理

Git基本操作 Git仓库创建 Git仓库的基本认知 Git仓库就是一个用来跟踪和管理项目文件变化的地方&#xff0c;其记录了所有的修改历史&#xff0c;可以回退到之前的任何一个历史版本 工作区&#xff1a;正在进行实际操作的文件夹暂存区&#xff1a;临时保存想要提交修改的区域…

【LeetCode:349. 两个数组的交集 + 哈希表】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

鸿蒙原生应用扬帆起航

就在2024年6月21日华为在开发者大会上发布了全新操作的系统HarmonyOS Next开发测试版&#xff0c;网友们把它称之为“称之为纯血鸿蒙”。因为在此之前鸿蒙系统底层式有两套基础架构的&#xff0c;一套是是Android的AOSP&#xff0c;一套是鸿蒙的Open Harmony&#xff0c;因为早…

计算机毕业设计 基于Python的毕业生去向反馈调查平台的设计与实现 Python毕业设计选题 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

物联网IoT平台 | 物联网IoT平台的定义

物联网IoT平台&#xff1a;定义、发展与应用在当今信息化时代&#xff0c;物联网&#xff08;Internet of Things&#xff0c;简称IoT&#xff09;已经成为推动社会进步和产业升级的重要力量。物联网IoT平台&#xff0c;作为连接物理世界与数字世界的桥梁&#xff0c;正逐步改变…

Docker安装Nginx

前提&#xff1a;Docker已安装好&#xff0c;本人使用的为自带docker的云服务器&#xff0c;docker常用命令已掌握&#xff0c;yjj为在根目录创建的一个文件夹&#xff0c;可自行修改对应的目录。 1、安装镜像&#xff0c;可去dockerhub上面找&#xff0c;一般都是组件名称。do…

双十一值得购买超声波清洗机吗?双十一超声波清洗机好物品牌推荐

随着双十一购物狂欢节即将拉开序幕&#xff0c;越来越多的消费者开始关注这个一年一度的购物盛宴。超声波清洗机作为近年来备受关注的家用电器&#xff0c;以其高效、便捷的清洁能力赢得了众多家庭的喜爱。在双十一期间&#xff0c;各大品牌纷纷推出优惠活动&#xff0c;让不少…

红黑树的底层讲解

一、红黑树的介绍 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是红&#xff08;red&#xff09;或黑&#xff08;black&#xff09;。通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红…

通过比较list与vector在简单模拟实现时的不同进一步理解STL的底层

cplusplus.com/reference/list/list/?kwlist 当我们大致阅读完list的cplusplus网站的文档时&#xff0c;我们会发现它提供的接口大致上与我们的vector相同。当然的&#xff0c;在常用接口的简单实现上它们也大体相同&#xff0c;但是它们的构造函数与迭代器的实现却大有不同。…

计算机网络:数据链路层 —— 共享式以太网

文章目录 共享式以太网CSMA/CD 协议CSMA/CD 协议 的基本原理 共享式以太网的争用期共享式以太网的最小帧长共享式以太网的最大帧长共享式以太网的退避算法截断二进制指数退避算法 共享二进制以太网的信道利用率使用集线器的共享式以太网10BASE-T 共享式以太网 共享式以太网是当…

自监督学习:引领机器学习的新革命

引言 自监督学习&#xff08;Self-Supervised Learning&#xff09;近年来在机器学习领域取得了显著进展&#xff0c;成为人工智能研究的热门话题。不同于传统的监督学习和无监督学习&#xff0c;自监督学习通过利用未标注数据生成标签&#xff0c;从而大幅降低对人工标注数据…

Modbus TCP 西门子PLC指令以太口地址配置以及 Poll Slave调试软件地址配置

1前言 本篇文章讲了 Modbus TCP通讯中的一些以太网端口配置和遇到的一些问题&#xff0c; 都是肝货自己测试的QAQ。 2西门子 SERVER 指令 该指令是让外界设备主动连接此PLC被动连接&#xff0c; 所以这里应该填 外界设备的IP地址。 这边 我因为是电脑的Modbus Poll 主机来…