关于iPhone 16 Pro评测视频评论区特征的多维度分析

1.项目背景

随着智能手机的迅速发展,消费者在选择新设备时越来越依赖于网络评价和用户反馈,B站作为中国领先的视频分享平台,聚集了大量科技评测内容,其中UP主的评论区成为用户讨论和交流的重要场所,特别是在iPhone 16 Pro发布后,相关评测视频吸引了广泛关注,本项目旨在通过对何同学和影视飓风两位知名UP主的iPhone 16 Pro评测视频评论数据进行深入分析,探索评论区的用户参与度、互动特征和情感倾向,这不仅有助于理解B站用户的行为模式,还可以为内容创作者提供改进互动策略的依据。

2.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
from datetime import datetime
from scipy.stats import f_oneway,chi2_contingency,spearmanr
from snownlp import SnowNLP
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
import jieba.posseg as pseg
import re
from collections import Counter
from itertools import combinations
he_data = pd.read_excel("/home/mw/input/iPhone9412/B站视频-何同学_241020_1729431535.xlsx")
jufeng_data = pd.read_excel("/home/mw/input/iPhone9412/B站视频-影视飓风_241020_1729431473.xlsx")

3.数据预览

飓风影视的视频的评论数更多,并且发现两个数据中rrpid(被回复评论的唯一标识符)和被回复用户都存在比较多的缺失值。

以何同学为例,不难发现,二级评论才存在rrpid和被回复用户,而一级评价都不存在的。

发现数据中视频标题存在一些问题,看起来是爬虫在获取同一个视频的评论数据时,误将视频标题中的 iPhone 版本号递增了(16、17、18、19),但是考虑到后续的分析不需要管他,这里后续直接删除处理,影视飓风里也存在这样的问题,现在只保留用户昵称、评论内容、评论时间、性别、用户当前等级、点赞数、回复数这些特征,其他特征在后续分析暂时用不到。

4.用户参与度分析

根据核密度图和箱线图的分布情况,可以得出以下关于何同学视频评论区用户参与度的结论:

  1. 点赞数分布特征:

    • 极度右偏的分布,大部分评论的点赞数集中在较低区域(靠近0)

    • 存在多个明显的异常值(离群点),最高点赞数达到约3500

    • 核密度图显示密度在接近0时达到峰值(约0.025),之后快速下降并趋于平缓

    • 箱线图显示大量的离群点分布在上方,说明有少数评论获得了远超普通评论的点赞数

  2. 回复数分布特征:

    • 同样呈现极度右偏分布,大多数评论的回复数很少

    • 相比点赞数,回复数的范围更小(0-350左右)

    • 核密度图显示峰值(约0.45)比点赞数更高,说明回复数的集中程度更高

    • 箱线图同样显示大量离群点,但离群点的极值(350)远小于点赞数的极值

  3. 整体互动特征:

    • 两个指标都呈现明显的"长尾分布"特征

    • 大多数评论获得的互动较少,少数评论获得极高互动

    • 用户更倾向于点赞而不是回复,这反映了用户偏好简单的互动方式

    • 这种分布模式说明评论区存在明显的"马太效应",热门评论会获得更多关注

这种分布特征是典型的社交媒体互动模式,反映了B站用户的参与行为特点和内容传播规律。

根据影视飓风的核密度图和箱线图分布情况,可以得出以下结论:

  1. 点赞数分布特征:

    • 极度右偏分布,绝大多数评论点赞数集中在低值区域

    • 最高点赞数达到约14000,比何同学高(3500)很多

    • 核密度图显示在接近0处有很高的峰值(约0.010),之后迅速下降

    • 箱线图显示存在大量极端离群值,说明点赞分布差异极大

    • 点赞数的范围(0-14000)比何同学更广,说明头部评论获得了更多关注

  2. 回复数分布特征:

    • 同样呈现右偏分布,绝大多数评论回复数较少

    • 最高回复数约280,与何同学(350)相近

    • 核密度图峰值(约0.40)与何同学相似,表明回复行为模式接近

    • 箱线图显示也有较多离群点,但分布范围相对集中

  3. 与何同学对比:

    • 点赞数的极值和分布范围都明显大于何同学,说明影视飓风的热门评论能获得更多点赞

    • 回复数的分布特征与何同学较为接近,说明用户的回复行为模式相似

    • 两个UP主的评论区都呈现明显的马太效应,但影视飓风的两极分化似乎更明显

总的来说,影视飓风的评论互动也呈现典型的社交媒体特征,但相比何同学,其热门评论似乎能获得更多的点赞互动。这可能与内容类型、受众群体或者视频播放量的差异有关。

可以看到,高点赞数评论中,大多数是吐槽苹果的按钮,然后有许多评论玩梗说按钮的作用和何同学一样,然后还有讽刺苹果的60hz屏幕和128G低内存的情况。

在影视飓风这里,高赞评论内容比较多,但是和何同学那边一样,大多数都是吐槽iPhone新品的,当然萝卜青菜各有所爱,这里不多描述,避免引战。

通过对比何同学和影视飓风的评论长度与互动关系的散点图,可以得出以下结论:

  1. 评论长度分布

    • 两个UP主的评论长度主要集中在0-300字之间

    • 极少数评论超过500字

    • 总体来看评论长度分布模式相似

  2. 点赞数分布特征

    • 影视飓风的最高点赞数(约14000)远高于何同学(约3700)

    • 两者都呈现明显的长尾分布,少数评论获得极高点赞

    • 短评论(0-100字)也能获得高点赞,说明评论长度并不是获得点赞的决定因素

  3. 回复数分布特征

    • 两个UP主评论的最高回复数较接近(都在300-350左右)

    • 短评论(0-100字)也能获得高回复

  4. 互动关系特点

    • 点赞数、回复数和评论长度没有明显的正相关关系

    • 两个UP主都存在"高点赞低字数"的评论,说明简短但有力的评论也能引起共鸣

  5. UP主特点对比

    • 影视飓风的高赞评论获得更多点赞,可能与其粉丝基数或内容特点有关

    • 评论区互动模式(点赞和回复的分布特征)两者基本相似

    • 两个UP主的粉丝都倾向于用简短评论表达观点

这种分布特征反映了B站评论区的典型特点:内容质量比长度更重要,且用户更倾向于通过点赞而非回复来互动。

通过对比何同学和影视飓风的用户等级与互动数据的散点图,可以得出以下结论:

  1. 用户等级分布特征

    • 两个UP主的评论区都主要集中在2-6级用户

  2. 点赞数与用户等级的关系

    • 获得高点赞的评论主要来自4-6级用户

    • 何同学:最高点赞(约3700)来自4级用户

    • 影视飓风:最高点赞(约14000)来自5级用户

    • 高等级用户获得高点赞的机会更大,但等级并不是决定因素

  3. 回复数与用户等级的关系

    • 高回复数同样主要集中在4-6级用户的评论中

虽然高等级用户更容易获得高互动量,但用户等级并不是决定互动量的唯一因素,评论的内容质量和切入点可能更重要。这反映了B站社区的良性特点:虽然活跃用户更容易获得关注,但优质内容才是获得高互动的关键。

5.时间分析

通过对比评论发布天数分布直方图和时间变化趋势图,可以得出以下综合结论:

  1. 初期互动特征(0-5天):

    • 两个UP主的评论都高度集中在发布后的前5天

    • 何同学首日评论量约2500条,影视飓风约5700条

    • 两个视频都在发布当天(第0天)获得最高评论量

    • 评论数呈现指数级下降趋势

  2. 中期互动特征(5-15天):

    • 评论数迅速下降,但仍保持低频率的持续互动

    • 何同学的评论数下降较为平缓,每天仍有少量稳定评论

    • 影视飓风的评论数下降更快,趋近于零

  3. 后期互动特征(15-30天):

    • 何同学视频仍然保持微弱但稳定的评论互动

    • 影视飓风的评论活跃度几乎完全消失

    • 直方图显示有零星的长尾评论出现

  4. 互动持续性对比

    • 何同学的视频讨论持续性更强,即使在发布一个月后仍有评论

    • 影视飓风的讨论热度集中在前期,后期讨论度较低

    • 两个视频都呈现出典型的"热点衰减"规律

  5. 用户互动模式

    • 用户倾向于在视频发布初期参与讨论

    • 90%以上的评论集中在前10天

通过分析两个UP主的评论小时分布图,可以得出以下结论:

  1. 何同学视频的时间分布特征

    • 评论高峰出现在晚上20-23点,峰值在21-22点

    • 白天12-19点保持中等评论活跃度

    • 凌晨0-1点还有一定评论量

    • 清晨3-7点是评论低谷期

    • 呈现明显的"晚高峰"特征

  2. 影视飓风视频的时间分布特征

    • 凌晨0点出现最高评论峰值(约1750条)

    • 其余时段评论量比较平均,在250-500条之间波动

    • 没有明显的晚高峰,全天分布相对均衡

    • 同样在清晨4-6点评论较少

  3. 两者对比分析

    • 评论量级差异:何同学晚高峰约400-500条,影视飓风凌晨高峰约1750条

    • 分布模式不同:
      • 何同学呈现典型的作息规律分布(晚高峰明显)

      • 影视飓风除了0点高峰外较为平均

  4. 用户行为洞察

    • B站用户普遍夜生活特征明显,晚上和凌晨活跃度高

    • 工作时间(9-17点)评论相对较少

    • 清晨活跃度最低,符合用户作息规律

  5. 运营建议

    • 视频发布时间建议选在晚上19-22点或0点前后

    • 与粉丝互动的最佳时间窗口在晚上8点后

    • 避免在清晨时段发布内容

    • 需要考虑不同时区用户的影响

这种分布特征反映了B站用户的典型观看和互动习惯,对内容创作和运营时间的选择有重要参考价值。

6.性别差异分析

进行卡方检验,发现p值远小于显著性水平0.05,这表明两个UP主视频评论的性别分布存在显著差异。

根据点赞数差异的单因素方差分析(ANOVA)结果,可以得出以下结论:

  1. 何同学视频的点赞行为

    • F统计量 = 2.03

    • p值 = 0.1310 > 0.05(显著性水平)

    • 结论:不同性别用户的点赞行为没有显著差异

    • 这表明性别因素并不影响用户对何同学视频评论内容的认可度

  2. 影视飓风视频的点赞行为

    • F统计量 = 0.46

    • p值 = 0.6318 > 0.05(显著性水平)

    • 结论:不同性别用户的点赞行为同样没有显著差异

    • 这表明性别因素也不影响用户对影视飓风视频评论内容的认可度

根据回复数差异的单因素方差分析(ANOVA)结果,可以得出以下结论:

  1. 何同学视频的回复行为

    • F统计量 = 1.68

    • p值 = 0.1858 > 0.05

    • 结论:不同性别用户的回复行为没有显著差异

    • 与点赞行为的结论一致(p = 0.1310)

  2. 影视飓风视频的回复行为

    • F统计量 = 0.49

    • p值 = 0.6147 > 0.05

    • 结论:不同性别用户的回复行为也没有显著差异

    • 与点赞行为的结论一致(p = 0.6318)

虽然观众群体的性别构成有显著差异,但在点赞、回复上却没有显著差异,说明两位UP主中评论区评论内容都具有跨性别的吸引力和认可度。

7.情感分析

7.1数据预处理

首先,处理原始的文本数据,只保留中文、字母、数字和符号,再使用jieba库进行分词处理,这样可以处理数据可以保证后续分析的准确性。

7.2SnowNLP情感分析

SnowNLP使用的是基于概率的情感分析,它考虑的是整个句子的上下文,而不是单个词,同一个词在不同语境下可能得到不同的情感分数,所以会出现积极中均提到了拍照、相机等等,甚至在消极中能看到支持、喜欢等积极词汇。

查看消极评论中的情况:

以何同学中消极评论里的“支持”这个词为例,可以看到,大多数还是划分正确的。

再使用Mann-Whitney U 检验来判断两个UP主视频评论的情感是否存在显著差异,发现p值远小于0.05,可以认为存在显著差异,并且根据饼图可以看到,何同学的评论区,积极情绪占比更大,而影视飓风中消极情绪占比更大,当然两个评论区中性评论是占比最大的,这也是符合B站大多数人的评论,都是抱着看乐子的心态。

8.斯皮尔曼相关性分析

通过斯皮尔曼相关性分析,可以看到,就评论长度和用户等级、点赞数、回复数呈弱正相关,回复数与点赞数之间呈中等正相关,说明较长的评论,对于获赞和获得回复有一定的关系,而高赞的评论,往往代表着比较有热度,所以会更容易引起回复讨论,但这也不是强相关,很多人都是只点赞表示认可,可能不会参与讨论。

9.总结

本项目通过统计检验和情感分析,深入探讨了B站两位知名UP主(何同学、影视飓风)关于iPhone 16 Pro评测视频的评论区特征。主要结论如下:

  1. 评论互动呈现典型的长尾分布,而影视飓风评论数量远高于何同学视频的评论数,且评论区的最高点赞数也远高于何同学评论区的最高点赞数,而最高回复数反而是何同学视频底下的评论。

  2. 两个UP主的评论区都主要集中在2-6级用户,获得高点赞、高回复数的评论主要来自4-6级用户。

  3. 评论长度与互动指标(点赞数、回复数)呈弱正相关,点赞数与回复数呈中等正相关,内容质量比长度更重要,且用户更倾向于通过点赞而非回复来互动。

  4. 两个UP主的评论都高度集中在发布后的前5天,并且两个视频都在发布当天获得最高评论量,用户倾向于在视频发布初期参与讨论,随着发布时间的推移,评论数呈现指数级下降趋势,呈现出典型的"热点衰减"规律。

  5. 何同学视频的评论高峰出现在晚上20-23点,峰值在21-22点;影视飓风视频的评论峰值出现在凌晨0点,其余时段评论量比较平均,并且工作时间(9-17点)评论相对较少,晚上和凌晨活跃度高。

  6. 两个UP主视频评论的性别分布存在显著差异,但是评论区评论点赞和回复数上却没有显著差异,说明两位UP主中评论区评论内容都具有跨性别的吸引力和认可度。

  7. 两个UP主视频评论的情感存在显著差异,并且何同学的评论区,积极情绪占比更大,而影视飓风中消极情绪占比更大,当然两个评论区中性评论是占比最大的,这也是符合B站大多数人的评论,都是抱着看乐子的心态。

  8. 建议博主选择晚上或0点前后发布内容,同时如果B友想获得高点赞、高回复的话,要注意评论质量,并且适当的吐槽或者玩梗,更能吸引互动。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/458063.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的汽车客运站管理系统【附源码】

基于SSM的汽车客运站管理系统(源码L文说明文档) 目录 4 系统设计 4.1 设计原则 4.2 功能结构设计 4.3 数据库设计 4.3.1 数据库概念设计 4.3.2 数据库物理设计 5 系统实现 5.1 管理员功能实现 5.1.1 管理员信息 5.1.2 车…

【程序员的逆袭】:在失业的阴影下寻找光明

故事摘要 在失业的阴霾中,一位程序员如何通过外包项目重燃希望之火?这个故事讲述了他的谋生手段,如何在压力之下,通过信息差赚取生活所需。 要点 信息的力量:赚钱的关键在于信息差,而非单纯的体力或脑力…

【轻量级聊天应用】Vocechat本地服务器部署结合cpolar异地即时通讯

文章目录 前言1. 拉取Vocechat2. 运行Vocechat3. 本地局域网访问4. 群晖安装Cpolar5. 配置公网地址6. 公网访问小结 7. 固定公网地址 前言 本文主要介绍如何在本地群晖NAS搭建一个自己的聊天服务Vocechat,并结合内网穿透工具实现使用任意浏览器远程访问进行智能聊天…

iTerm2 保持SSH远程连接

1、保持SSH远程连接的稳定,防止因闲置时间过长而断开连接 When idle, send ASCII code 35 every 60 seconds每60秒 输入# 2、客户端设置保持活动 设置客户端每隔60秒发送一次保活信号,总共尝试3次。 vim ~/.ssh/configHost *ServerAliveInterval 60…

python csv库

python csv库 水一水又是一篇,乐 读取 import csv # 打开 CSV 文件 with open(example.csv, moder, newline) as file: csv_reader csv.reader(file) # 读取文件头(可选) headers next(csv_reader) print(f"Headers: {heade…

w001基于SpringBoot的在线拍卖系统

🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…

gateway 整合 spring security oauth2

微服务分布式认证授权方案 在分布式授权系统中,授权服务要独立成一个模块做统一授权,无论客户端是浏览器,app或者第三方,都会在授权服务中获取权限,并通过网关访问资源 OAuth2的四种授权模式 授权码模式 授权服务器将授…

【密码学】全同态加密张量运算库解读 —— TenSEAL

项目地址:https://github.com/OpenMined/TenSEAL 论文地址:https://arxiv.org/pdf/2104.03152v2 TenSEAL 是一个在微软 SEAL 基础上构建的用于对张量进行同态加密操作的开源Python库,用于在保持数据加密的状态下进行机器学习和数据分析。 Ten…

CSS基础—网页布局(重点!)

1、两列布局 (1)概念 经典两列布局是指一种网页布局方式,其中一列宽度固定,另一列宽度自适应。‌ 这种布局方式在网页设计中非常常见,因为它能够提供良好的视觉效果和用户体验。 如图所示: 页面顶部放置一…

网络搜索引擎Shodan(4)

声明:学习视频来自b站up主 泷羽sec,如涉及侵权马上删除文章 声明:本文主要用作技术分享,所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险,并遵循相关法律法规。 感谢泷…

【JavaEE】【多线程】volatile,wait/notify

目录 一、volatile关键字1.1 内存可见性1.2 volatile解决内存可见性问题 二、wait和notify2.1 wait2.2 notify2.3 使用例子2.3.1 例子12.3.2 例子二 一、volatile关键字 volatile可以保证内存可见性,只能修饰变量。 1.1 内存可见性 在前面介绍线程不安全原因时介…

大数据开发扩展shell 笔记

大数据开发扩展shell 此笔记来自尚硅谷 学习目标 1 熟悉shell脚本的原理和使用 2 熟悉shell的编程语法 第一节 Shell概述 1)Linux提供的Shell解析器有: [atguiguhadoop101 ~]$ cat /etc/shells /bin/sh/bin/bash/sbin/nologin/bin/dash/bin/tcsh/b…

JCSA-Journal of Consumer Affairs

文章目录 一、征稿简介二、重要信息三、服务简述四、投稿须知五、联系咨询 一、征稿简介 二、重要信息 期刊官网:https://ais.cn/u/3eEJNv 三、服务简述 Journal of Consumer Affairs由美国消费者利益委员会(ACCI)拥有,成立于1…

淘宝商品详情的“侦探游戏”:如何用API接口揭开数据的面纱

在这个充满神秘数据的电商世界里,淘宝商品详情就像是一个个隐藏的宝藏,等待着我们去发掘。而API接口,就是我们的“侦探工具”,帮助我们快速揭开这些宝藏的面纱。今天,我们就来一场幽默的“侦探游戏”,看看如…

炒股VS炒CSGO游戏装备,哪个更好做

这个项目,赚个10%都是要被嫌弃的 虽然天天都在抒发自己对股市的看法,但自己自始至终也没有买进任何一支股票。之所以对这个话题感兴趣,着实是因为手上的游戏搬砖项目也是国际性买卖,跟国际形势,国际汇率挂钩&#xff…

C++线程池手写实现

1.Thread类的封装 封装Thread类&#xff0c;使其可以直接在外部调用对象的start,detach,join和cancel等方法来实现对线程的操作 1.1代码 //Thread.h// // Created by crab on 2024/10/20. //#ifndef THREAD_H #define THREAD_H#include <pthread.h>class Thread { pub…

使用 Docker 管理完整项目:Java、Vue、Redis 和 Nginx 的一站式部署

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119@qq.com] 📱个人微信:15279484656 🌐个人导航网站:www.forff.top 💡座右铭:总有人要赢。为什么不能是我呢? 专栏导…

[大模型学习推理]资料

https://juejin.cn/post/7353963878541361192 lancedb是个不错的数据库&#xff0c;有很多学习资料 https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch 博主讲了很多讲解&#xff0c;可以参考 https://juejin.cn/post/7362789…

js纯操作dom版购物车(实现购物车功能)

代码&#xff1a; <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title>&l…

Linux 进程间通信_匿名管道

1.程间通信目的 : 数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 资源共享&#xff1a;多个进程之间共享同样的资源。 通知事件&#xff1a;一个进程需要向另一个或一组进程发送消息&#xff0c;通知它&#xff08;它们&#xff09;发生了某种事件&#xff08;如…