深度学习:正则化(Regularization)详细解释

正则化(Regularization)详细解释

正则化(Regularization)是机器学习和统计建模领域中用以防止模型过拟合同时增强模型泛化能力的一种技术。通过引入额外的约束或惩罚项到模型的损失函数中,正则化能够有效地限制模型的复杂度和管理模型参数的自由度。在这里,我们将深入探讨正则化的数学原理、常用形式以及它们在实际中的应用,以提供一个全面严谨的视角。

正则化的数学基础和动机

正则化基于这样一个观察:过于复杂的模型容易在训练数据上学习到随机噪声而非真实的数据生成过程,从而在新的、未见过的数据上表现不佳。通过对损失函数引入一个与模型复杂度(通常是模型参数的大小或数量)相关的惩罚项,正则化帮助抑制过拟合,提升模型在未知数据上的表现。

正则化的一般形式可以描述为:
[
L reg ( θ ) = L ( θ ; X , Y ) + λ R ( θ ) L_{\text{reg}}(\theta) = L(\theta; X, Y) + \lambda R(\theta) Lreg(θ)=L(θ;X,Y)+λR(θ)
]
其中:

  • ( $L(\theta; X, Y) $) 是原始的损失函数,例如均方误差或对数损失,用于评估模型在训练数据上的拟合度。
  • ( R ( θ ) R(\theta) R(θ) ) 是正则化项,其形式取决于正则化类型,旨在量化模型复杂度。
  • ( λ \lambda λ ) 是正则化系数,控制正则化强度,通常通过交叉验证等方法确定其最优值。

主要类型的正则化

  1. L1 正则化(Lasso):

    • 正则化项为 ( R ( θ ) = ∑ i = 1 n ∣ θ i ∣ R(\theta) = \sum_{i=1}^{n} |\theta_i| R(θ)=i=1nθi )。
    • L1 正则化倾向于产生一个稀疏的参数向量,即许多参数值被压缩至零,这一特性使其适用于进行特征选择。
  2. L2 正则化(Ridge):

    • 正则化项为 ( R ( θ ) = ∑ i = 1 n θ i 2 R(\theta) = \sum_{i=1}^{n} \theta_i^2 R(θ)=i=1nθi2 )。
    • L2 正则化通常导致参数值平均减小而非归零,适合处理参数值过大的问题,增强模型的稳定性和泛化能力。
  3. 弹性网络(Elastic Net):

    • 结合了L1和L2正则化的特点,正则化项为 ( $R(\theta) = \lambda_1 \sum_{i=1}^{n} |\theta_i| + \lambda_2 \sum_{i=1}^{n} \theta_i^2 $)。
    • 弹性网络通过平衡L1和L2的特性,特别适用于存在高度相关特征的数据集。

正则化的应用与实际效果

在实际应用中,正则化参数 ( λ \lambda λ ) 的选择至关重要,通常需要通过交叉验证或相似的模型选择技术来优化。选择过大的 ( λ \lambda λ ) 可能会导致模型过于简单(欠拟合),而过小的 ( λ \lambda λ ) 则不足以防止过拟合。因此,适当的 ( λ \lambda λ ) 选择可以平衡模型的偏差与方差,优化模型的整体性能。

总结

正则化是机器学习中一项基本而强大的技术,用于控制模型的过拟合并提升其在未见数据上的预测能力。通过理解并应用不同类型的正则化技术,研究人员和实践者可以构建更为健壮和有效的预测模型。正则化不仅是模型优化过程的一部分,也是现代机器学习算法设计和实现中的一个重要考量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/461829.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【qt qtcreator使用】【正点原子】嵌入式Qt5 C++开发视频

QT creator 的使用 一.qtcreator的介绍  (1).ui界面介绍    [1].软件左侧界面部分    [2].软件界面下方部分    [3].UI设计界面 (2).debug的使用 (3).项目的配置 (4).帮助文档的使用 (5).构建多个项目 二.qtcreator 的设置 (1).qt编译套件的设置 (2).设置快…

Vue3和Springboot前后端简单部署

一、Vue3Springboot 的前后端简单部署 (在win下面部署) 1、前端实现部署 思想: 前端打包项目后、放到nginx中进行部署 1、nginx 安装 和 解压 1、下载 nginx.zip win版本 解压就可以 2、解压后、启动程序 3、访问 nginx 欢迎页面 http://localhost/ 80 端口 可以省略 直接访…

【大数据学习 | kafka】kafka的ack和一致性

1. ack级别 上文中我们提到过kafka是存在确认应答机制的,也就是数据在发送到kafka的时候,kafka会回复一个确认信息,这个确认信息是存在等级的。 ack0 这个等级是最低的,这个级别中数据sender线程复制完毕数据默认kafka已经接收到…

【分布式技术】分布式事务深入理解

文章目录 概述产生原因关键点 分布式事务解决方案3PC3PC的三个阶段:3PC相比于2PC的改进:3PC的缺点: TCCTCC事务的三个阶段:TCC事务的设计原则:TCC事务的适用场景:TCC事务的优缺点:如何解决TCC模…

Linux高阶——1027—

1、守护进程的基本流程 1、父进程创建子进程,父进程退出 守护进程是孤儿进程,但是是工程师人为创建的孤儿进程,低开销模式运行,对系统没有压力 2、子进程(守护进程)脱离控制终端,创建新会话 …

centos7配置keepalive+lvs

拓扑图 用户访问www.abc.com解析到10.4.7.8,防火墙做DNAT将访问10.4.7.8:80的请求转换到VIP 172.16.10.7:80,负载均衡器再将请求转发到后端web服务器。 实验环境 VIP:负载均衡服务器的虚拟ip地址 LB :负载均衡服务器 realserv…

服务器宝塔安装哪吒监控

哪吒文档地址:https://nezha.wiki/guide/dashboard.html 一、准备工作 OAuth : 我使用的gitee,github偶尔无法访问,不是很方便。第一次用了极狐GitLab,没注意,结果是使用90天,90天后gg了,无法登…

【动手学强化学习】part6-策略梯度算法

阐述、总结【动手学强化学习】章节内容的学习情况,复现并理解代码。 文章目录 一、算法背景1.1 算法目标1.2 存在问题1.3 解决方法 二、REINFORCE算法2.1 必要说明softmax()函数交叉熵策略更新思想 2.2 伪代码算法流程简述 2.3 算法代码2.4 运行结果2.5 算法流程说明…

单片机内存管理和启动文件

一、常见存储器介绍 FLASH又称为闪存,不仅具备电子可擦除可编程(EEPROM)的性能,还不会断电丢失数据同时可以快速读取数据,U盘和MP3里用的就是这种存储器。在以前的嵌入式芯片中,存储设备一直使用ROM(EPROM),随着技术的…

Python画图3个小案例之“一起看流星雨”、“爱心跳动”、“烟花绚丽”

源码如下: import turtle # 导入turtle库,用于图形绘制 import random # 导入random库,生成随机数 import math # 导入math库,进行数学计算turtle.setup(1.0, 1.0) # 设置窗口大小为屏幕大小 turtle.title("流星雨动画&…

SQL-lab靶场less1-4

说明:部分内容来源于网络,如有侵权联系删除 前情提要:搭建sql-lab本地靶场的时候发现一些致命的报错: 这个程序只能在php 5.x上运行,在php 7及更高版本上,函数“mysql_query”和一些相关函数被删除&#xf…

AutoGLM:智谱AI的创新,让手机成为你的生活全能助手

目录 引言一、AutoGLM:开启AI的Phone Use时代二、技术核心:AI从“语言理解”到“执行操作”三、实际应用案例:AutoGLM的智能力量1. 智能生活管理🍎2. 社交网络的智能互动🍑3. 办公自动化🍒4. 电子商务的购物…

ceph补充介绍

SDS-ceph ceph介绍 crushmap 1、crush算法通过计算数据存储位置来确定如何存储和检索,授权客户端直接连接osd 2、对象通过算法被切分成数据片,分布在不同的osd上 3、提供很多种的bucket,最小的节点是osd # 结构 osd (or device) host #主…

Scrapy源码解析:DownloadHandlers设计与解析

1、源码解析 代码路径:scrapy/core/downloader/__init__.py 详细代码解析,请看代码注释 """Download handlers for different schemes"""import logging from typing import TYPE_CHECKING, Any, Callable, Dict, Gener…

如何解决docker镜像下载失败问题

经常用docker的朋友都知道,docker hub的镜像仓库经常访问不通 rootiZwz97kfjnf78copv1ae65Z:~# docker pull ubuntu:18.04 Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: request canceled while waiting for connection (Client.…

探索 ONLYOFFICE:开源办公套件的魅力

文章目录 引言一、ONLYOFFICE 产品介绍与历史1.1 ONLUOFFICE 介绍1.2 ONLYOFFICE发展历史 二、ONLYOFFICE 的核心功能2.1 文档处理2.2 演示文稿 三、ONLYOFFICE 部署与安装四、ONLYOFFICE 产品优势和挑战五、ONLYOFFICE 案例分析六、ONLYOFFICE 的未来发展七、全文总结 引言 在…

FlaskFastAPIgunicornunicorn并发调用

Flask VS. FastAPI Flask和FastAPI是Python中两种流行的Web框架,它们各自具有不同的特点和适用场景。以下是它们之间的一些主要区别: 1. 框架类型 Flask:Flask是一个轻量级的微框架,适合构建小型到中型的Web应用。它灵活且易于扩展…

第2章 JSP基础

JavaWeb程序设计-T2(JSP基础) 一、JSP概述 1、JSP概念 JSP(Java Server Page)是sun公司倡导建立的一种动态网页标准。 用于开发动态网页(将后端开发语言嵌入带前端中【将java嵌入到HTML中】) 2、JSP工作原理 JSP就是将传统Java代码嵌入到html页面代码中,由Web服务器进…

Unix 中文件权限设置

在 Unix 和类 Unix 系统中,文件权限是通过八进制数表示的,这些数字代表不同的权限组合。以下是一些常见的八进制数及其对应的权限设置: 1. **0644**: - 所有者(owner):读(read&a…

【小白学机器学习28】 统计学脉络+ 总体+ 随机抽样方法

目录 参考书,学习书 0 统计学知识大致脉络 1 个体---抽样---整体 1.1 关于个体---抽样---整体,这个三段式关系 1.2 要明白,自然界的整体/母体是不可能被全部认识的 1.2.1 不要较真,如果是人为定义的一个整体,是可…