Python淘宝数据挖掘与词云图制作指南

在当今数据驱动的时代,电商平台的数据挖掘和分析变得尤为重要。作为国内最大的B2C电商平台之一,淘宝每天都产生海量的数据,这些数据为电商运营和数据分析提供了丰富的资源。本文将介绍如何使用Python进行淘宝数据挖掘,并通过API接口和词云图制作,帮助用户更好地理解和分析淘宝数据。

一、环境准备

在开始之前,请确保你的开发环境中已经安装了以下必要的库:

  • requests:用于发送HTTP请求。
  • beautifulsoup4:用于解析HTML页面。
  • simplejson:用于处理JSON数据。
  • pandas:处理Excel文件中的词频数据。
  • wordcloud:用于生成词云图。
  • matplotlib:用于展示和保存词云图。
  • pyecharts(可选):用于生成可交互的词云图。

你可以通过以下命令安装这些库:

 

bash复制代码

pip install requests beautifulsoup4 simplejson pandas wordcloud matplotlib pyecharts
二、淘宝数据挖掘
1. 使用淘宝API

淘宝API(Application Programming Interface)是一组软件接口,可以让第三方应用程序和淘宝平台进行交互,实现数据的获取、调用、同步等操作。

  • 注册淘宝开放平台账号:首先,你需要在淘宝开放平台注册一个账号,并创建一个应用,获取App Key和App Secret。
  • 调用API:根据淘宝API技术文档中的规范、接口和参数,使用Python编写代码,调用淘宝API,获取所需的数据。

例如,使用商品类API可以查询商品详情,交易类API可以查询交易订单等。

2. 爬虫采集

对于没有开放API的数据,可以使用爬虫技术进行采集。以下是一个简单的爬虫示例,用于采集淘宝商品评论数据:

  1. 登录淘宝:打开要采集评论的商品页面,使用浏览器的开发者工具(F12)找到评论页面的基本URL。
  2. 编写爬虫代码:使用requests发送HTTP请求,beautifulsoup4解析HTML页面,提取评论数据。
  3. 保存数据:将提取的评论数据保存到文件或数据库中。

注意:在进行淘宝商品评论爬取时,要遵守淘宝的相关规定和法律法规,不要过度爬取数据,以免对淘宝服务器造成过大压力或违反法律规定。

三、词云图制作
1. 数据清洗

在制作词云图之前,需要对评论数据进行清洗,去除无效字符、空值等。例如,使用pandasdropna()方法去除包含空值的行,使用正则表达式去除评论中的特殊字符。

2. 分词统计

使用jieba库对评论内容进行分词,并统计每个词汇的出现频率。

 

python复制代码

import jieba
from collections import Counter
words = jieba.lcut(comment_text) # 对评论文本进行分词
word_count = Counter(words) # 统计词频
3. 生成词云图

使用wordcloud库生成词云图。你可以根据需要调整词云图的参数,如字体、颜色、形状、最大词数等。

 

python复制代码

from wordcloud import WordCloud
import matplotlib.pyplot as plt
wordcloud = WordCloud(font_path='simhei.ttf', # 设置字体路径,确保中文显示
background_color='white', # 背景色
width=800, # 图像宽度
height=400, # 图像高度
max_words=200, # 最大词汇数
max_font_size=100, # 最大字体大小
colormap='viridis' # 颜色方案
).generate_from_frequencies(word_count) # 根据词频生成词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off') # 关闭坐标轴
plt.show()
4. 保存词云图

你可以将生成的词云图保存为图片文件,便于分享和展示。

 

python复制代码

wordcloud.to_file('wordcloud.png')
5. 使用pyecharts生成可交互词云图

如果你需要生成可交互的词云图,可以使用pyecharts库。

 

python复制代码

from pyecharts.charts import WordCloud
from pyecharts import options as opts
wordcloud = WordCloud()
wordcloud.add("", word_count.items(), word_size_range=[20, 100])
wordcloud.set_global_opts(title_opts=opts.TitleOpts(title="淘宝商品评论词云图"))
wordcloud.render("wordcloud.html")

在浏览器中打开生成的wordcloud.html文件,即可查看可交互的词云图。

四、总结

通过本文的介绍,你了解了如何使用Python进行淘宝数据挖掘和词云图制作。无论是使用淘宝API还是爬虫技术,都可以帮助你获取丰富的数据资源。而词云图作为一种直观的数据可视化方式,可以帮助你更好地理解和分析这些数据。希望本文能对你的淘宝数据挖掘和词云图制作之路有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463706.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

聊一聊:ChatGPT搜索引擎会取代谷歌和百度吗?

当地时间 10 月 31 日,OpenAI 正式推出了 ChatGPT 搜索功能,能实时、快速获取附带相关网页来源链接的答案。这一重大升级标志着其正式向谷歌的搜索引擎霸主地位发起挑战。 本周五我们聊一聊: 欢迎在评论区畅所欲言,分享你的观点~ …

Hms?: 1渗透测试

靶机:Hms?: 1 Hms?: 1 ~ VulnHub 攻击机:kail linux 2024 主机扫描阶段发现不了靶机,所以需要按DriftingBlues2一样手动配置网卡 1,将两台虚拟机网络连接都改为NAT模式,并查看靶机的MAC地址 2,攻击机上做主机扫描发现…

<项目代码>YOLOv8 夜间车辆识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…

MATLAB实现蝙蝠算法(BA)

MATLAB实现蝙蝠算法(BA) 1.算法介绍 蝙蝠算法(简称BA)是一种受微型蝙蝠回声定位机制启发的群体智能算法,由Xin-She Yang于2010年提出。这种算法模拟了微型蝙蝠通过向周围环境发出声音并监听回声来识别猎物、避开障碍物以及追踪巢穴的行为。…

【温酒笔记】UART

参考文档&#xff1a;野火STM32F103 1. 物理层 STM32见下图 1、TTL电平标准&#xff1a; 输出L&#xff1a;<0.8V&#xff1b;H:>2.4V。 输入L&#xff1a;<1.2V&#xff1b;H:>2.0V。 2、CMOS电平标准&#xff1a; 输出L&#xff1a;<0.1Vcc&#xff1b;…

Chromium127编译指南 Mac篇(一)- 环境准备详解

概述 在开源浏览器生态系统中&#xff0c;Chromium始终扮演着举足轻重的角色。作为Google Chrome的技术基石&#xff0c;它不仅支撑着全球最受欢迎的浏览器之一&#xff0c;更为众多定制化浏览器项目提供了坚实的基础。对于渴望探索浏览器技术深度&#xff0c;或计划开发自有浏…

【spark的集群模式搭建】spark集群之Yarn集群模式搭建(清晰明了的搭建流程)

文章目录 1、使用Anaconda部署Python2、上传、解压、重命名3、创建软连接&#xff08;如果在Standalone模式中创建有就删除&#xff09;4、配置spark环境变量5、修改spark-env.sh配置文件6、修改spark-defaults.conf 配置文件7、修改log4j.properties配置文件8、上传spark jar包…

h2 数据库命令行工具用法汇总

背景 h2 数据是个短小精悍的嵌入式数据库&#xff0c;纯 Java 实现&#xff0c;且非常小。 我们有一个比较底层的应用中就是用了 h2 数据库来存储应用的基础信息&#xff0c;这个数据库说起来比较容易。 本文总结实际项目中涉及到的 h2 的相关技术及问题。 控制台工具用法 …

再探“构造函数”(2)友元and内部类

文章目录 一. 友元‘全局函数’作友元‘成员函数’作友元‘类‘作友元 内部类 一. 友元 何时会用到友元呢&#xff1f; 当想让&#xff08;类外面的某个函数/其它的类&#xff09;访问 某个类里面的(私有或保护的)内容时&#xff0c;可以选择使用友元。 友元提供了一种突破&a…

告别枯燥数据!20种色彩缤纷的数据可视化图表任你选,轻松应对各种场景

我们每天都在和各种数据打交道&#xff0c;单纯的一串串数字&#xff0c;看着就头疼。如果数据不再是枯燥的表格&#xff0c;而是变成了色彩鲜艳的柱状图、线条流畅的折线图&#xff0c;或者是直观易懂的饼图&#xff0c;让用户一眼Get到重点&#xff0c;让老板为你的汇报方案鼓…

C++和OpenGL实现3D游戏编程【连载17】——着色器进阶(附源码)

🔥C++和OpenGL实现3D游戏编程【目录】 1、本节要实现的内容 在前面着色器初步一节我们了解了着色器的一些初步知识,通过顶点着色器和片段着色器显示出了一个彩色的立方体。我们这节课就来了解一些在着色器中显示纹理等一系列实用操作,同时了解一些进阶的图像渲染技术,比如…

散热器为什么要加风扇:【图文讲解】

前面我们聊到了TEC散热器中&#xff0c;TEC的工作原理&#xff0c;也大概聊了一下热的整个传递过程。TEC散热器在工作的时候&#xff0c;会产生冷热两个端面&#xff0c;核心工作原理是通电后TEC把冷端的热量搬移到热端。这样把TEC散热器的冷端放置在需要散热的器件表面&#x…

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测&#xff08;Matlab&#xff09; 目录 HO-XGBoost河马算法优化极限梯度提升树多变量回归预测&#xff08;Matlab&#xff09;预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现HO-XGBoost多变量回归预测&…

Zookeeper 简介 | 特点 | 数据存储

1、简介 zk就是一个分布式文件系统&#xff0c;不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现&#xff0c;是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…

[5] 一篇文章教会你如何实现端口敲门

文章目录 1. 描述2. 基本原理3. 优点4. 缺点5. 实现过程6. firewall-cmd命令介绍7. 写到最后 1. 描述 端口敲门技术(Prot Knocking)技术&#xff0c;用于通过一系列预定的端口来动态地打开防火墙或访问特定服务甚至执行一小段任务&#xff0c;用于增强系统地安全性&#xff0c;…

TensorRT-LLM的k8s弹性伸缩部署方案

Scaling LLMs with NVIDIA Triton and NVIDIA TensorRT-LLM Using Kubernetes | NVIDIA Technical Blog 一共涉及4个k8s组件&#xff1a; 1. Deployment&#xff1a;跑起来N个pod&#xff1b;指定NVIDIA官方的triton&trt-llm的docker image&#xff0c;指定好model放在哪个…

Chainlit集成LlamaIndex实现知识库高级检索(HyDE查询重写转换)

检索原理 HyDEQueryTransform 是一种用于信息检索系统中的查询转换技术&#xff0c;它基于假设文档嵌入&#xff08;Hypothetical Document Embeddings&#xff0c;简称HyDE&#xff09;的概念&#xff0c;旨在通过生成假设文档来改善查询与文档之间的语义对齐&#xff0c;进而…

使用Markdown编写适用于GitHub的README.md文件的目录结构

文章目录 [toc] 顶部1. 使用[TOC]自动生成2. VSCode中的插件3. 手搓目录目录相关资料本文相关代码一、概述1.1 基本概念1.2 两种处理模型&#xff08;1&#xff09;微批处理&#xff08;2&#xff09;持续处理 1.3 Structured Streaming和Spark SQL、Spark Streaming关系 二、编…

[ shell 脚本实战篇 ] 编写恶意程序实现需求(恶意程序A监测特定目录B出现特定文件C执行恶意操作D-windows)

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

攻克数字工具(GKData)在推动 AI 发展中的关键作用

摘要&#xff1a;本文深入探讨了攻克数字工具&#xff08;GKData&#xff09;对人工智能&#xff08;AI&#xff09;发展的重要推动作用&#xff0c;同时阐述了人工智能技术的发展历程、现状、应用领域和前景。分析了 GKData 在数据处理、模型训练与优化、算法创新等方面为 AI …