【开源免费】基于SpringBoot+Vue.JS新闻推荐系统(JAVA毕业设计)

博主说明:本文项目编号 T 056 ,文末自助获取源码 \color{red}{T056,文末自助获取源码} T056,文末自助获取源码


目录

  • 一、系统介绍
  • 二、演示录屏
  • 三、启动教程
  • 四、功能截图
  • 五、文案资料
    • 5.1 选题背景
    • 5.2 国内外研究现状
    • 5.3 可行性分析
  • 六、核心代码
    • 6.1 查询新闻
    • 6.2 查询新闻排行榜
    • 6.3 添加新闻评论


一、系统介绍

随着信息互联网购物的飞速发展,国内放开了自媒体的政策,一般企业都开始开发属于自己内容分发平台的网站。本文介绍了新闻推荐系统的开发全过程。通过分析企业对于新闻推荐系统的需求,创建了一个计算机管理新闻推荐系统的方案。文章介绍了新闻推荐系统的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。本新闻推荐系统有管理员和用户两个角色。管理员功能有个人中心,用户管理,排行榜管理,新闻管理,我的收藏管理,系统管理等。用户功能可以在首页查看新闻排行榜,新闻信息,并可以注册登录,收藏新闻,对新闻评论。用户注册登录,评论新闻,收藏新闻,查看新闻,搜索新闻。因而具有一定的实用性。本站是一个B/S模式系统,采用Spring Boot框架作为开发技术,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得新闻推荐系统管理工作系统化、规范化。

在这里插入图片描述

基于Vue.js和SpringBoot的新闻推荐系统是一个综合性的解决方案,旨在为管理员和普通用户提供一个高效、易用的新闻管理平台。该系统分为管理后台和用户网页端,管理后台允许管理员进行用户管理,包括用户信息的增删改查,确保系统的用户数据安全和准确。新闻信息管理模块则允许管理员发布、编辑和删除新闻内容,同时可以对新闻进行分类和标签管理,以便于用户更好地检索和浏览。新闻收藏管理模块为用户提供了个性化的新闻收藏功能,用户可以收藏自己感兴趣的新闻,方便日后阅读。新闻排行榜管理模块则通过算法分析用户的阅读习惯和新闻的热度,生成新闻排行榜,推荐给用户最热门和最相关的新闻内容。整个系统的设计注重用户体验和数据的实时性,确保用户能够及时获取到最新的新闻资讯。

在这里插入图片描述

基于Vue.js和SpringBoot的新闻推荐系统,分为管理后台和用户网页端,可以给管理员和普通用户使用,包括用户管理、新闻信息管理、新闻收藏管理、新闻排行榜管理、系统轮播图管理和系统基础模块,项目编号T056。

在这里插入图片描述

二、演示录屏

三、启动教程

四、功能截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、文案资料

5.1 选题背景

在信息爆炸的时代,用户面临着海量内容的选择困难,如何从众多信息中快速找到自己感兴趣的内容成为了一个亟待解决的问题。新闻推荐系统作为解决这一问题的有效工具,其研究背景显得尤为重要。随着互联网技术的飞速发展,新闻媒体平台每天产生大量的新闻内容,用户在浏览新闻时往往需要花费大量时间筛选感兴趣的信息。新闻推荐系统通过分析用户的行为数据、偏好和上下文信息,利用机器学习、数据挖掘和自然语言处理等技术,为用户提供个性化的新闻推荐服务。这不仅能够提高用户的阅读体验,还能增加用户对平台的粘性,提高新闻媒体的传播效率和商业价值。因此,研究和开发高效、准确的新闻推荐系统,对于提升用户体验、优化信息传播和促进媒体产业发展具有重要意义。

5.2 国内外研究现状

国外新闻推荐系统的研究现状正迅速发展,主要集中在提高个性化推荐精度、增强用户满意度以及优化算法效率等方面。目前,研究者们正致力于利用机器学习、深度学习、自然语言处理等先进技术,对用户行为数据进行深入分析,以实现更精准的新闻内容推荐。同时,考虑到用户隐私和数据安全问题,研究也在探索如何在保护用户隐私的前提下,进行有效的数据挖掘和推荐。此外,多模态学习、上下文感知推荐以及跨语言推荐等新兴领域也成为研究的热点,旨在为用户提供更加丰富和多元的新闻阅读体验。随着技术的不断进步,新闻推荐系统正朝着更加智能化、个性化的方向发展。

国内新闻推荐系统的研究现状正迅速发展,随着大数据和人工智能技术的不断进步,新闻推荐系统在个性化推荐、用户行为分析、内容理解等方面取得了显著成果。目前,研究者们正致力于通过深度学习、自然语言处理和用户画像构建等技术,提高新闻推荐的相关性和准确性。同时,为了应对信息过载和假新闻问题,研究也在探索如何通过算法优化和用户反馈机制来提升新闻质量。此外,考虑到用户隐私和数据安全,国内新闻推荐系统的研究也在加强数据保护和伦理规范的建设。整体而言,国内新闻推荐系统正朝着更加智能、高效和安全的方向发展。

5.3 可行性分析

新闻推荐系统作为一种新兴的人工智能技术,其经济可行性主要体现在以下几个方面:首先,通过精准的用户画像和行为分析,推荐系统能够为用户提供个性化的新闻内容,提高用户满意度和粘性,从而增加广告收入和订阅用户数量。其次,推荐系统可以减少编辑团队的工作量,通过算法自动筛选和推荐新闻,降低人力成本。此外,随着技术的进步,推荐系统的开发和维护成本逐渐降低,使得更多的新闻机构能够负担得起这项技术。最后,推荐系统还能通过数据分析,为新闻机构提供市场趋势和用户需求的洞察,帮助他们制定更有效的内容策略和商业决策。因此,从长远来看,新闻推荐系统不仅能够提升用户体验,还能为新闻机构带来经济效益,具有很高的经济可行性。

新闻推荐系统作为一种新兴的人工智能技术,其社会可行性主要体现在以下几个方面:首先,它能够根据用户的阅读习惯和兴趣偏好,提供个性化的新闻内容,从而提高用户的阅读体验和满意度。其次,新闻推荐系统通过算法优化,能够更有效地筛选和推送高质量、有价值的新闻,有助于减少信息过载,让用户在海量信息中快速找到自己感兴趣的内容。此外,这种系统还能够促进新闻媒体的创新和发展,通过数据分析和用户反馈,媒体可以更好地了解受众需求,调整内容策略,提高新闻的传播效果。同时,新闻推荐系统也有助于提升社会信息的透明度和多样性,通过推荐不同来源和观点的新闻,促进公众对不同议题的全面了解和深入思考。然而,新闻推荐系统也面临着算法偏见、隐私保护等挑战,需要在技术发展的同时,加强法律法规的建设,确保系统的公正性和安全性。

六、核心代码

6.1 查询新闻

@RequestMapping("/page")
public R page(@RequestParam Map<String, Object> params,XinwenEntity xinwen,HttpServletRequest request){EntityWrapper<XinwenEntity> ew = new EntityWrapper<XinwenEntity>();PageUtils page = xinwenService.queryPage(params, MPUtil.sort(MPUtil.between(MPUtil.likeOrEq(ew, xinwen), params), params));return R.ok().put("data", page);
}

6.2 查询新闻排行榜

@RequestMapping("/query")
public R query(PaixingbangEntity paixingbang){EntityWrapper< PaixingbangEntity> ew = new EntityWrapper< PaixingbangEntity>();ew.allEq(MPUtil.allEQMapPre( paixingbang, "paixingbang")); PaixingbangView paixingbangView =  paixingbangService.selectView(ew);return R.ok("查询排行榜成功").put("data", paixingbangView);
}

6.3 添加新闻评论

@RequestMapping("/add")
public R add(@RequestBody DiscussxinwenEntity discussxinwen, HttpServletRequest request){discussxinwen.setId(new Date().getTime()+new Double(Math.floor(Math.random()*1000)).longValue());ValidatorUtils.validateEntity(discussxinwen);discussxinwenService.insert(discussxinwen);return R.ok();
}

本文项目编号 T056,希望给大家带来帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463736.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用DJL和PaddlePaddle的口罩检测详细指南

使用DJL和PaddlePaddle的口罩检测详细指南 完整代码 该项目利用DJL和PaddlePaddle的预训练模型&#xff0c;构建了一个口罩检测应用程序。该应用能够在图片中检测人脸&#xff0c;并将每张人脸分类为“戴口罩”或“未戴口罩”。我们将深入分析代码的每个部分&#xff0c;以便…

【MySQL】架构

1. MySQL架构基本理解 与餐厅就餐类比理解 每次数据库查询就像一次餐厅服务 应用程序发出查询相当于点菜MySQL解析和执行查询&#xff0c;后厨根据订单制作食物事务管理保证数据的一致性&#xff0c;类似于结账的时候保证账单正确查询的时候考虑优化器&#xff0c;类似于厨师选…

Linux服务器或Linux计算机设置不记录历史命令

1.设置环境变量 打开命令终端&#xff0c;编辑.bashrc文件中&#xff0c;修改HISTSIZE和HISTFILESIZE都为0 sudo nano ~/.bashrcfor setting history length see HISTSIZE and HISTFILESIZE in bash(1) HISTSIZE0 HISTFILESIZE0 2.生效 source ~/.bashrc 3.验证 cat ./b…

基于Spring Boot的中小型制造企业质量管理系统设计与实现,LW+源码+讲解

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自…

动手学深度学习65 注意力分数

1. 注意力分数 好处&#xff1a;k q v的长度都可以不一样。 2. 代码 3. QA 1 画出注意力权重&#xff0c;对任何一行query&#xff0c;给每一对key-value多少注意力【哪对key-value更重要】 2 语义上的区别 3 是的。一元版本换成向量版本 4 通常用相似度做注意力分数&…

从新手到专家:7款电脑平面设计软件评测

平面设计在时尚、广告等多个领域扮演着重要角色&#xff0c;而创作出独特且富有创意的设计作品则需要依赖优秀的电脑平面设计软件。市场上的电脑平面设计软件众多&#xff0c;每款软件都有其独到之处。本文将为你推荐几款值得关注的电脑平面设计软件&#xff0c;并分析它们的特…

HTML 块级元素和内联(行内)元素详解

在 HTML 中,元素根据它们在页面中的表现方式分为两类:块级元素 和 内联元素(行内元素)。了解块级元素和内联元素的特性与使用方法,是掌握HTML开发的重要基础。本文将深入探讨这两类元素的特点及其在实际开发中的应用。 文章目录 一、块级元素1.1 块级元素是什么?1.2 块级…

微信支付宝小程序SEO优化的四大策略

在竞争激烈的小程序市场中&#xff0c;高搜索排名意味着更多的曝光机会和潜在用户。SEO即搜索引擎优化&#xff0c;对于小程序而言&#xff0c;主要指的是在微信小程序商店中提高搜索排名&#xff0c;从而增加曝光度和用户访问量。有助于小程序脱颖而出&#xff0c;提升品牌知名…

内存马浅析

之前在jianshu上写了很多博客&#xff0c;但是安全相关的最近很多都被锁了。所以准备陆陆续续转到csdn来。内存马前几年一直是个很热门的漏洞攻击手段&#xff0c;因为相对于落地的木马&#xff0c;无文件攻击的内存马隐蔽性、持久性更强&#xff0c;适用的漏洞场景也更多。 J…

【网络】套接字编程——TCP通信

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;TCP网络服务器简单模拟实现。 > 毒鸡汤&#xff1a;有些事情&#xff0c;总是不明白&#xff0c;所以我不会坚持。早安! > 专栏选自&#xff1a;…

CytoSPACE·空转和单细胞数据的高分辨率比对

1. 准备输入文件&#xff0c;需要四个文件&#xff0c;所有文件都应以制表符分隔的表格输入格式 (.txt) 提供。 a. scRNA-seq 基因表达文件 矩阵必须是基因&#xff08;行&#xff09;乘以细胞&#xff08;列&#xff09;。 第一行必须包含单个细胞 ID&#xff0c;第一列必须…

模型 定位地图

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。心智导航现实的空间图。 1 定位地图模型的应用 1.1 小玉的职业定位与发展规划 小玉&#xff0c;24岁&#xff0c;市场营销专业本科毕业生&#xff0c;有半年汽车销售实习经历。毕业后&#xff0c;她…

规划误差降低27%,碰撞率降低33%Senna: 大规模视觉-语言模型与端到端自动驾驶相结合

Abstract 端到端自动驾驶在大规模数据中展示了强大的规划能力&#xff0c;但在复杂、罕见的场景中仍然因常识有限而表现不佳。相比之下&#xff0c;大型视觉语言模型&#xff08;LVLMs&#xff09;在场景理解和推理方面表现出色。前进的方向在于融合两者的优势。以往利用LVLMs…

深入浅出 | 谈谈MNN GPU性能优化策略

MNN(Mobile Neural Network)是一个高性能、通用的深度学习框架&#xff0c;支持在移动端、PC端、服务端、嵌入式等各种设备上高效运行。MNN利用设备的GPU能力&#xff0c;全面充分“榨干”设备的GPU资源&#xff0c;来进行深度学习的高性能部署与训练。 概述 MNN自开源以来&a…

UE 引入 IOS framework库的坑

一、我明明已经把framework库进行签名的却在 上传到开发者后台时一直报错 90034 签章遗失 或者 未签 这个问题我最近遇到 极其坑爹 我是这个情况 这是我的framework库的目录 关键就在这了 多出了这个文件 就影响了 上传到开发者后台 就报错 90034 将其删除就好 &…

Rust 力扣 - 3090. 每个字符最多出现两次的最长子字符串

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 本题使用滑动窗口进行求解&#xff0c;使用左指针和右指针分别表示窗口的左边界和窗口的右边界&#xff0c;使用哈希表记录窗口内的字符及其对应数量 我们首先向右移动右指针&#xff0c;将字符加入到哈希表中进…

Spring Boot框架下的信息学科平台系统开发实战

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了基于保密信息学科平台系统的开发全过程。通过分析基于保密信息学科平台系统管理的不足&#xff0c;创建了一个计算机管理基于保密信息学科平台系统的方案。文章介…

利用EasyExcel实现简易Excel导出

目标 通过注解形式完成对一个方法返回值的通用导出功能 工程搭建 pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&qu…

练习LabVIEW第三十二题

学习目标&#xff1a; 刚学了LabVIEW&#xff0c;在网上找了些题&#xff0c;练习一下LabVIEW&#xff0c;有不对不好不足的地方欢迎指正&#xff01; 第三十二题&#xff1a; 利用labview elapsed time(已用时间)定时设计输出一个方波 开始编写&#xff1a; 前面板放置一…

桑基图在医学数据分析中的更复杂应用示例

桑基图&#xff08;Sankey Diagram&#xff09;能够有效地展示复杂的流动关系&#xff0c;特别适合用于医学数据分析中的多种转归和治疗路径的可视化。接下来&#xff0c;我们将构建一个稍微复杂的示例&#xff0c;展示不同疾病患者在治疗过程中的流动&#xff0c;以及他们的治…