图像融合self

噪声处理:高斯噪声,椒盐噪声

中值滤波,均值滤波,非局部均值滤波,变换滤波(如小波变换阈值滤波),双边滤波

其中变换滤波以及双边滤波可以更少的损坏图像细节

特征检测与匹配:包括 SIFT、SURF、ORB 等特征点检测和描述符匹配。

1. 非局部均值去噪的基本原理

非局部均值(Non-Local Means, NLM)去噪算法中,寻找的是多个相似的邻域块,而不是仅仅寻找一个。这个正是非局部均值算法区别于传统局部滤波方法的关键所在。

原理

非局部均值去噪的核心思想是,图像中存在很多相似的结构或纹理,即使它们相隔很远。为了更好地去除噪声,同时保留图像细节,NLM 算法会在整个图像中搜索和某个像素邻域相似的多个邻域。

具体而言:

  1. 给定像素的邻域:对于某个像素,算法会取一个小的邻域块(通常是一个正方形窗口)作为参考。
  2. 搜索相似邻域:在整幅图像中搜索与参考邻域相似的其他邻域,而不仅仅局限于参考像素附近的局部区域。
  3. 加权平均:找到多个相似的邻域后,根据它们的相似度计算权重,并对这些邻域的像素值进行加权平均。最终,参考像素的值将被多个相似邻域的加权平均值替代,从而达到去噪效果。

关键点:

  • 相似性度量:算法通过计算参考邻域和其他邻域之间的相似度(通常使用加权欧式距离或其他相似性度量)来判断邻域的相似性。
  • 多个相似邻域的加权平均:NLM 不是简单地选择一个最相似的邻域,而是会结合多个相似的邻域块,通过加权平均方式来决定该像素最终的去噪结果。每个相似邻域对结果的贡献取决于它与参考邻域的相似性。
  • 全局搜索:与局部均值滤波不同,NLM 算法可以在整个图像中寻找相似块,而不局限于某个小的局部区域。正是这种非局部特性,使得 NLM 在保持图像细节(如纹理和边缘)方面具有显著优势。

算法的几个重要参数:

  • patch size(邻域大小):用于比较的邻域块的大小,一般是 7×77 \times 77×7 或 5×55 \times 55×5。
  • search window size(搜索窗口大小):搜索相似邻域的范围,通常是 21×2121 \times 2121×21 或 31×3131 \times 3131×31,这决定了在多大范围内查找相似的邻域块。
  • 滤波参数 hhh:用于控制相似度的衰减,如果两个邻域的相似性较低,那么它们对去噪结果的贡献也会被减少。

2. 多图像的非局部均值去噪

在多图像去噪的场景下,NLM 也可以扩展到多个输入图像的情况。这对于像 CT 扫描、MRI 图像或多次曝光的照片非常有用,通常多幅图像存在一定的冗余信息,通过使用非局部均值算法,可以利用不同图像的相似性来增强去噪效果。

对于多图像去噪,非局部均值的原理与单图像去噪类似,但在搜索相似邻域时,可以在所有图像中查找,而不仅限于单幅图像。

多图像去噪的步骤:
  1. 输入多幅图像:将所有图像看作相似场景的不同观测,每幅图像中包含噪声。
  2. 寻找相似块:在多幅图像的联合域中,寻找某个像素的相似邻域块。这意味着不仅在当前图像中查找相似邻域,还可以在其他图像中查找。
  3. 加权平均:计算这些相似邻域的加权平均值,得到去噪后的像素值。

skimage库,opencv库都支持

多图像融合去噪
金字塔模型进行多层噪声去除,和图像滤波。因为噪声主要隐藏在高频区域,不进行降噪直接融合会放大噪声。或者先进行多层去噪后融合的图像,进行多帧图像的在融合,每一帧图像均去噪后,避免使用其它多尺度变换的方式融合的图像,将高频噪声放大

图像融合介绍

基于多尺度分解的多源图像融合的质量和效果主要取决于分解解和重构的工具和融合规则的设定

图像融合的三个层次:像素级融合,特征级融合,决策级融合

1、像素级融合是对多源图像机型像素级别的预处理(配准,去噪和增强等),像素级融合可以更充分利用和探索图像中的有效特征和信息
2、特征级融合是利用算法将图像中的某些特征提取之后在融合(特征通常指图像轮廓,边缘,亮3、度等)
决策级融合依赖于成熟的数学理论或者模型,例如主观贝叶斯方法。4、多焦点图像融合,多曝光图像融合,多模态医学图像融合,遥感图像融合,红外可见光图像融合

图像分解

拉普拉斯金字塔,梯度金字塔用于图像分解融合,小波分解图像融合算法

整个融合过程主要包括以下四个步骤,即
1 )对两幅不同聚焦目标的多聚焦图像进行预处理,包括配准,去噪等;
2 )对经严格配准的两幅多聚焦图像进行多尺度 Curvelet 变换;
(3)将原始图像分解得到的不同尺度层系数进行融合处理;
4 )用融合得到的系数重构得到融合后的图像。

多尺度几何变换用于图像融合(使小波分解变换对方向更敏感):曲线波,轮廓波,非下采样轮廓波,剪切波等。
非下采样轮廓滤波:由非下采样金字塔和拉普拉斯金字塔的设计类似,不同在于使用了不同的滤波单元,非下采样反向滤波单元可以捕捉不同方向的图像细节和边缘特征,确保了图像的平移不变性。

融合规则

1、空间域融合方法:线性加权,假彩色融合,统计模型方法(建立在图像或成像传感器统计模型的基础上,确定出融合优化函数进行参数估计,由源图像建立一个鲜艳模型,找到先验概率最大的融合图像,转变为优化问题),神经网络融合

2、变换域融合方法:基于金字塔的变换融合方法,基于小波变换的融合方法,基于其它多尺度分解的融合

3、变换域融合方法的融合规则:基于像素选取的融合规则,基于邻域窗口的融合规则和基于区域特征的融合规则。

融合性能的评价指标

基于单幅图像的统计特性的评价指标

均值、信息熵、标准差、平均梯度、空间频率等
1、均值:所有像素灰度算术平均值(一般图像的标准在128附近,视觉良好,特殊图像另外处理)
 2、信息熵:空间频率越大,表明图像的空间与的总体活跃程度高,图像效果好。
 3、平均梯度:反应了图像中微笑细节反差表达能力和纹理变化特征,也反应图像的清晰程度。x向y向梯度综合考虑,平均梯度越大,表明图像越清晰。
 4、空间频率:空间频率越大,表明图像的空间域的总体活跃程度越高,图像效果越好。


基于源图像的评价指标

交叉伤、互信息量、相关系数、偏差指数、扭曲程度

1、交叉熵:求融合图像与多幅原始图像的均方根交叉熵,交叉熵反映了融合图像与多个源图像之间的对应像素之间的差异,交叉熵越小,差异则越小,融合方法从原始图像提取的信息量则越多。
2、互信息量:互信息量评估两个或多个变量之间的相关性,融合图像与两个或多个源图像的互信息值越大,表明融合图像从源图像中获取的信息越多,融合效果越好
3、相关系数:相关系数越大,融合效果越好
4、偏差指数:偏差指数DI指融合图像F各个像素灰度值与源图像A相应像素灰度值差的绝对值,与同源图像A相应像素回复纸币的平均值。偏差指数的大小表示融合图像与源图像平均灰度值的相对差异,反应融合图像在光谱信息上的匹配程度和将源高分辨率图像的细节传递给融合图像的能力,理想情况下DI=0.
5、扭曲程度:反应融合图像的失真程度,DD值越小,融合图像对源图像的失真程度越小


基于参考图像的评价指标(融合图像与标准参考图像之间的差异程度)

1、均方根误差
2、峰值信噪比

数据集

1、模拟数据集:把高清的自然图像进行高斯滤波,进而获得由清晰图像和模糊图像构成的图像对。清晰图像代表聚焦区域,模糊图像代表散焦区域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/469293.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openai Realtime API (实时语音)

https://openai.com/index/introducing-the-realtime-api/ 官方demo https://github.com/openai/openai-realtime-console 官方demo使用到的插件 https://github.com/openai/openai-realtime-api-beta?tabreadme-ov-file 装包配置 修改yarn.lock 这个包是从github下载的 &q…

杨辉三角-一维数组与二维数组解法

这种问题是很有规律的 这里 总结一下 这类问题输出&#xff1a;对称 且数据相同的很多 就比如首位都是1 如果计算中间值遇到困难 可以试着把边界值单独输出 一维数组 // // Created by 徐昌真 on 2024/11/11. // #include <stdio.h> //一维数组 int main() {int n; /…

无人机反制技术与方法:主动防御,被动防御技术原理详解

无人机反制技术与方法主要分为主动防御和被动防御两大类&#xff0c;以下是关于这两类防御技术的原理详解&#xff1a; 主动防御技术原理 主动防御系统旨在通过直接干扰或摧毁来攻击入侵的无人机。这类系统通常包括电子干扰、激光武器、定向能武器以及硬杀伤手段&#xff08;如…

计算机毕业设计Python+图神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习 深度学习

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

小白初入Android_studio所遇到的坑以及怎么解决

1. 安装Android_studio 参考&#xff1a;Android Studio 安装配置教程 - Windows(详细版)-CSDN博客 Android Studio超级详细讲解下载、安装配置教程&#xff08;建议收藏&#xff09;_androidstudio-CSDN博客 想下旧版本的android_studio的地址&#xff08;仅供参考&#xf…

020_Servlet_Mysql学生选课系统(新版)_lwplus87

摘 要 随着在校大学生人数的不断增加&#xff0c;教务系统的数据量也不断的上涨。针对学生选课这一环节&#xff0c;本系统从学生网上自主选课以及课程发布两个大方面进行了设计&#xff0c;基本实现了学生的在线信息查询、选课功能以及教师对课程信息发布的管理等功能&…

Vue Cli 脚手架目录文件介绍

小试牛刀 //vetur高亮; vuetab 快速生成 <template><div class"box">我是个盒子<button click"fn">按钮</button></div> </template><script> export default {methods:{fn(){alert("Hello Vue")}} …

[安洵杯 2019]easy_web 详细题解

知识点: 编码转换 命令执行 linux空格_关键字绕过 打开页面 发现url 是 /index.php?imgTXpVek5UTTFNbVUzTURabE5qYz0&cmd 有img参数和cmd参数 cmd参数是没赋值的,随便赋值为123456 页面没有反应 鼠标移动到图片下面时发现有东西,当然直接查看页面源代码也可以发现 尝…

完整培训教程:骨折图像分割

骨折图像分割系统源码&#xff06;数据集分享 [yolov8-seg-efficientViT&#xff06;yolov8-seg-C2f-CloAtt等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global A…

文本语义分块、RAG 系统的分块难题:小型语言模型如何找到最佳断点

文本语义分块、RAG 系统的分块难题&#xff1a;小型语言模型如何找到最佳断点&#xff1f; 转自jina最新的关于文本语义分块的分享和模型 之前我们聊过RAG 里文档分块 (Chunking) 的挑战&#xff0c;也介绍了 迟分 (Late Chunking) 的概念&#xff0c;它可以在向量化的时候减…

物联网技术及其在智慧城市中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 物联网技术及其在智慧城市中的应用 引言 物联网概述 定义…

新的服务器Centos7.6 安卓基础的环境配置(新服务器可直接粘贴使用配置)

常见的基础服务器配置之Centos命令 正常来说都是安装一个docker基本上很多问题都可以解决了&#xff0c;我基本上都是通过docker去管理一些容器如&#xff1a;mysql、redis、mongoDB等之类的镜像&#xff0c;还有一些中间件如kafka。下面就安装一个 docker 和 nginx 的相关配置…

金属箔电阻

6.金属箔电阻如何实现“高精度” 电阻的阻值会受到各种“应力”影响而发生改变&#xff0c;离开稳定性的高精度是没有意义的。 例如&#xff0c;电阻出厂时的精度时0.01%&#xff0c;为了实现精度付出了高昂的费用&#xff0c;但在几个月的存储或几百个小时的负载后阻值的变化…

在Django中安装、配置、使用CKEditor5,并将CKEditor5录入的文章展现出来,实现一个简单博客网站的功能

在Django中可以使用CKEditor4和CKEditor5两个版本&#xff0c;分别对应软件包django-ckeditor和django-ckeditor-5。原来使用的是CKEditor4&#xff0c;python manager.py makemigrations时总是提示CKEditor4有安全风险&#xff0c;建议升级到CKEditor5。故卸载了CKEditor4&…

C语言 | Leetcode C语言题解之第559题N叉树的最大深度

题目&#xff1a; 题解&#xff1a; /*** Definition for a Node.* struct Node {* int val;* int numChildren;* struct Node** children;* };*/int maxDepth(struct Node* root) {if (!root) {return 0;}int depth 0;// 创建空队列const int qCap 10e4 1;str…

SQLI LABS | Less-40 GET-BLIND Based-String-Stacked

关注这个靶场的其它相关笔记&#xff1a;SQLI LABS —— 靶场笔记合集-CSDN博客 0x01&#xff1a;过关流程 输入下面的链接进入靶场&#xff08;如果你的地址和我不一样&#xff0c;按照你本地的环境来&#xff09;&#xff1a; http://localhost/sqli-labs/Less-40/ 都 Less-…

turtlesim修改窗口大小;添加自己的小乌龟;

目前手边有humble版本ROS。以此为教程。其他版本以此类推 github中搜索ros&#xff0c;然后选择ros官网&#xff08;九点方阵那个图标&#xff09;。然后 在branch中&#xff0c;选择humble&#xff0c;然后复制链接。 git clone https://github.com/ros/ros_tutorials.git -…

OSG开发笔记(三十一):OSG中LOD层次细节模型介绍和使用

​若该文为原创文章&#xff0c;未经允许不得转载 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/143697554 各位读者&#xff0c;知识无穷而人力有穷&#xff0c;要么改需求&#xff0c;要么找专业人士&#xff0c;要么自己研究 长沙红胖子Qt…

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信

VMWare虚拟机NAT模式下与外部主机(非宿主机)通信 1. VMWare虚拟机网络 VMWare的三种网络工作模式&#xff1a; Bridged&#xff1a;桥接模式NAT&#xff1a;网络地址转换模式Host-Only &#xff1a;仅主机模式 VMWare 网络连接配置界面如下&#xff1a; 在本次测试环境中&a…

IDEA连接不同种类数据库

首先添加驱动 到了添加页面后&#xff0c;引入驱动jar包 添加URL样版&#xff08;我这来添加的是瀚高数据库&#xff0c;Key-Value&#xff09;也可以看上图中URL Templates Key&#xff1a;default Value&#xff1a;jdbc:highgo://{host::localhost}?[:{port::5866}][/{data…