【系统设计】数据库压缩技术详解:从基础到实践(附Redis内存优化实战案例)

概述

在现代数据库系统中,压缩技术对于提高存储效率和加速查询性能至关重要。特别是在处理大规模数据时,压缩能够极大地减少存储空间,并优化查询性能。本文将总结几种常见的压缩方式,并通过详细的解释和示例清晰地展示每种压缩方法。此外,我们将结合Redis的实际问题,提供一个应用案例。

常见的压缩技术

1. 运行长度编码(Run-length Encoding, RLE)

运行长度编码通过记录重复值的次数来实现压缩,特别适用于数据中有大量连续重复值的情况。

示例数据
A, A, A, B, B, B, C, C, A, A
压缩后的表示
(A, 3), (B, 3), (C, 2), (A, 2)
详细解释

运行长度编码对连续相同的元素进行压缩,通过记录元素及其重复次数来节省存储空间。对于长序列的相同值非常有效,能够显著减少内存占用。

示例图
+-----+-----+-----+-----+-----+-----+
|  A  |  A  |  A  |  B  |  B  |  B  |
+-----+-----+-----+-----+-----+-----+
|     RLE: (A,3)  |     RLE: (B,3)  |
+-----+-----+-----+-----+-----+-----+

2. 字典编码(Dictionary Encoding)

字典编码通过为重复值创建一个字典,并用较小的标识符替代原始值。

示例数据
A, B, A, C, B, A
字典
A -> 1
B -> 2
C -> 3
压缩后的表示
1, 2, 1, 3, 2, 1
详细解释

字典编码对于重复值较多且基数较低的列压缩效果显著。通过用短标识符替换原始数据,可以大幅度节省存储空间。

示例图
Original:
+-----+-----+-----+-----+-----+-----+
|  A  |  B  |  A  |  C  |  B  |  A  |
+-----+-----+-----+-----+-----+-----+Dictionary:
+-----+-----+-----+
|  A  |  B  |  C  |
+-----+-----+-----+
|  1  |  2  |  3  |
+-----+-----+-----+Compressed:
+-----+-----+-----+-----+-----+-----+
|  1  |  2  |  1  |  3  |  2  |  1  |
+-----+-----+-----+-----+-----+-----+

3. 位图压缩(Bitmap Encoding)

位图压缩适用于基数较低的列(即列中的可能值较少),为每一个可能的值创建一个位图,标识每行是否具备该值。

示例数据
A, B, A, C, B, A
位图表示
A 位图: 1, 0, 1, 0, 0, 1
B 位图: 0, 1, 0, 0, 1, 0
C 位图: 0, 0, 0, 1, 0, 0
详细解释

位图压缩对于基数较低的列(如布尔列或状态列)非常有效,能够加速查询和布尔操作(如 ANDORNOT)。

示例图
Original Column:
+-----+-----+-----+-----+-----+-----+
|  A  |  B  |  A  |  C  |  B  |  A  |
+-----+-----+-----+-----+-----+-----+Bitmaps:
A: 1, 0, 1, 0, 0, 1
B: 0, 1, 0, 0, 1, 0
C: 0, 0, 0, 1, 0, 0

4. 差值编码(Delta Encoding)

差值编码适用于数值型数据,特别是当数据具有递增或递减的趋势时。它通过存储相邻值之间的差值来压缩数据。

示例数据
100, 101, 103, 106, 110
压缩后的表示
100, +1, +2, +3, +4
详细解释

差值编码对于递增或递减的数值数据非常有效,可以极大地减少存储空间。它通过记录相邻数据的变化量而不是实际值来实现压缩。

示例图
Original:
+-----+-----+-----+-----+-----+
| 100 | 101 | 103 | 106 | 110 |
+-----+-----+-----+-----+-----+Delta Encoded:
+-----+----+----+----+----+
| 100 | +1 | +2 | +3 | +4 |
+-----+----+----+----+----+

5. 前缀压缩(Prefix Encoding)

前缀压缩主要用于字符串列,当多个字符串有相同的前缀时,可以将前缀提取出来,减少重复存储。

示例数据
apple, application, apply, banana, band, banner
压缩后的表示
apple, applic(ation), apply, ban(ana), ban(d), ban(ner)
详细解释

前缀压缩对于长字符串列,尤其是有共同前缀的字符串,压缩效果显著。通过提取和共享公共前缀,能够减少存储空间。

示例图
Original Strings:
+-------------+--------------+------+--------+------+--------+
|   apple     | application  | apply| banana | band | banner |
+-------------+--------------+------+--------+------+--------+Compressed Representation:
+-------+--------------------+-------+
| Prefix| Suffixes           | Result|
+-------+--------------------+-------+
| "app" | ["le", "lication", "ly"]   -> "apple", "application", "apply"
| "ban" | ["ana", "d", "ner"]       -> "banana", "band", "banner"
+-------+--------------------+-------+

Redis中的压缩应用:实例分析

使用Redis优化内存的实践案例

在本章中,我们将讨论Redis在实际使用中的一个典型问题,以及如何通过优化数据编码来解决 Redis 进程占用内存过大的问题。通过本章,你将了解到如何使用字典编码和Lua脚本来减少Redis的内存占用,提高系统的稳定性。


Redis 是一个开源的、基于内存存储的键值对数据库,支持多种数据结构,如字符串、哈希表、列表、集合和有序集合等。由于其高性能和多功能性,Redis 被广泛应用于缓存、会话管理和实时数据分析等场景。

Redis 的高性能部分归功于其将数据存储在内存中的设计。然而,正因为如此,如果数据量过大且没有做好内存管理,可能会引发系统内存不足(Out Of Memory, OOM)的情况,导致系统崩溃。


问题描述

在某个实际项目中,Redis 在运行一段时间后,系统发生了OOM(内存不足)错误。Linux 系统日志中显示,系统随机杀死了一个进程,这是典型的OOME(Out Of Memory Error)表现,最终导致整个系统崩溃。

通过深入分析,发现问题的主要原因是:

  • Redis 进程占用过多内存。
  • 在进行 DUMP 操作(即备份或持久化内存数据到硬盘)时,内存暴增,导致系统内存耗尽。

由于数据的存储格式较为复杂,且数据标识符长度较大,Redis 内存随着数据量的增加而迅速膨胀。

数据存储结构分析
  • 原始数据格式(Key-Value 存储):

    • 使用 Redis 的 Hash 结构,数据键的格式为:{数据唯一标识}:{数据周期},对应的数据则存储在这个 Hash 中。
  • 数据关联关系:

    • 使用 Redis 的 Set 结构,存储格式为:Set {数据唯一标识}:{数据周期},其中值为 {数据唯一标识}
  • 数据索引:

    • 使用 Redis 的 Set 结构,存储格式为:Set {数据周期},其中值为当前周期所有的 {数据唯一标识}

这些数据标识大约占据了 255 个字符,导致 Redis 内存占用过大,尤其在数据量较多时,内存使用快速增加。


解决方案

为了有效减少 Redis 内存占用,我们采用了 字典编码前缀编码 进行优化,核心思路是通过将长字符串的标识符映射为唯一的数字来减少内存开销。

改进后的思路
  1. 将数据标识映射到唯一的数字标识

    • 我们将原本的 {数据唯一标识} 映射为一个数字 ID,这样可以大幅减少存储键的内存占用。
  2. 使用 Lua 脚本保证唯一性和原子性

    • 为了保证不同进程访问相同的 {数据唯一标识} 能够得到相同的数字 ID,我们使用 Redis 的 Lua 脚本实现这一逻辑。
    • 在 Lua 脚本中,如果 {数据唯一标识} 不存在,使用 Redis 的 INCRBY 命令生成一个唯一的数字 ID;如果标识已存在,则直接返回对应的数字 ID。
    • Lua 脚本在 Redis 中具有 原子性,确保操作是线程安全的,不会出现并发问题。
Lua 脚本实现

下面是用于处理数据标识映射的 Lua 脚本:

local key = KEYS[1]   -- {数据唯一标识}
local exists = redis.call('EXISTS', key)if exists == 1 then-- 如果标识已存在,返回对应的数字 IDreturn redis.call('GET', key)
else-- 如果标识不存在,生成新的数字 IDlocal newId = redis.call('INCRBY', 'global_id', 1)redis.call('SET', key, newId)return newId
end
  • 步骤说明
    • KEYS[1] 是传入的 {数据唯一标识}
    • 通过 EXISTS 检查该标识是否已经存在。
    • 如果存在,直接使用 GET 返回对应的数字 ID。
    • 如果不存在,则通过 INCRBY 生成新的 ID,并将标识与生成的 ID 关联存储。

优化结果

通过上述优化措施,原本平均每个数据标识占用的 255 个字符,通过映射为数字 ID,内存占用得到了显著的减少。以下是优化前后的对比:

  • 优化前:每个 {数据唯一标识} 以字符串形式存储,平均长度为 255 字节。
  • 优化后:每个 {数据唯一标识} 被映射为整数 ID,平均长度为 8 字节(假设使用 64 位整数)。

这种优化方式不仅减小了内存占用,还使得系统更加稳定,避免了OOM错误的发生,提升了系统的持久化性能。


本次优化展示了通过 字典编码前缀编码 技术,结合 Redis 的 Lua 脚本,如何有效减少内存占用,解决 Redis 进程占用内存过大的问题。通过减少冗长数据标识的存储开销,我们成功避免了系统的OOM错误。

这种存储优化思路在处理大量数据存储时非常有效,特别是在内存有限的场景下,可以显著提高 Redis 的使用效率。


你可以根据实际情况调整Redis的配置和数据存储结构,确保在高并发和大数据场景下的稳定性。

结论

数据压缩技术在现代数据库系统中扮演着重要角色。根据不同类型的列和数据分布特点,选择合适的压缩方式可以显著提高存储效率,并加速查询性能。了解这些压缩方式及其适用场景,将有助于数据库管理员和开发人员更好地优化数据库系统。通过本文的讲解,你应该能够理解并应用这些技术来优化Redis或其他数据库的内存使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/470339.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NUXT3学习日记一(在我git中拉取代码、文件讲解)

Nuxt 3 是一个基于 Vue 3 的现代框架,用于构建服务器端渲染(SSR)和静态生成的应用程序。它提供了一种简化的方式来创建高性能的 Vue 应用,具有许多强大的功能和优点。以下是 Nuxt 3 的一些主要应用和优点: 一、应用场…

vue3项目中内嵌vuepress工程两种实现方式

目录 一、示例二、创建vuepress工程三、配置vue项目的打包命令四、 通过iframe嵌套实现过程五、 将vue项目打包,启本地服务运行index.html 一、示例 vue项目,点击用户手册按钮,通过a标签跳转到vuepress框架搭建的页面。点击后者通过路由跳转…

简述 synchronized 和 java.util.concurrent.locks.Lock 的异同?

大家好,我是锋哥。今天分享关于【简述 synchronized 和 java.util.concurrent.locks.Lock 的异同?】面试题。希望对大家有帮助; 简述 synchronized 和 java.util.concurrent.locks.Lock 的异同? 在Java编程中,synchro…

centos7上安装mysql

1.现查看虚拟机上有没有wget包,如果没有的话进行安装 yum install -y wget 2.进入MySQL :: Download MySQL Yum Repository下载mysql安装源 找到与linux相应的版本,复制地址,如果找不到地址,可以复制如下 3.下载mysql官方yum源 …

操作系统离散存储练习题

1. (简答题)分页存储管理系统具有快表,内存访问时间为2ns,检索快表时间为0.5ns,快表命中率为80%,求有效访问时间 -分析:首先访问缓存(快表),如果没有找到访问内存(页表&…

PHP搭建开发环境(Windows系统)

要搭建一个完整的PHP动态网站,离不开操作系统、Web服务器、数据库、和PHP软件。 虽然有不错方便的方式,比如使用phpstudio等等等等许多面板都是非常快速不错的方式,但是这里是教会大家如何配置而不只是依赖别人整合好的面板软件,…

开源 2 + 1 链动模式、AI 智能名片、S2B2C 商城小程序在用户留存与品牌发展中的应用研究

摘要:本文以企业和个人品牌发展中至关重要的用户留存问题为切入点,结合管理大师彼得德鲁克对于企业兴旺发达的观点,阐述了用户留存对品牌营收的关键意义。在此基础上,深入分析开源 2 1 链动模式、AI 智能名片、S2B2C 商城小程序在…

SpringBoot后端解决跨域问题

1.全局方式 新建一个conifg配置类,内容如下: Configuration public class CorsConfig implements WebMvcConfigurer {Overridepublic void addCorsMappings(CorsRegistry registry) {registry.addMapping("/**")//是否发送Cookie.allowCrede…

「数据要素」行业简报|2024.11.上刊

纵观数据要素行业动态,洞察行业风向,把握行业脉搏! 一、政策发布 1、《山东省公共数据资源登记管理工作规范(试行)》公开征求意见 11月7日,为认真贯彻落实《中共中央办公厅 国务院办公厅关于加快公共数据资源开发利用的意见》《…

什么是RAG? LangChain的RAG实践!

1. 什么是RAG RAG的概念最先在2020年由Facebook的研究人员在论文《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》中提出来。在这篇论文中他们提出了两种记忆类型: 基于预训练模型(当时LLM的概念不像现在这么如日中天&#xff0…

Vite初始化Vue3+Typescrpt项目

初始化项目 安装 Vite 首先,确保你的 Node.js 版本 > 12.0.0。然后在命令行中运行以下命令来创建一个 Vite Vue 3 TypeScript 的项目模板: npm init vitelatest进入项目目录 创建完成后,进入项目目录: cd vue3-demo启动…

nginx部署H5端程序与PC端进行区分及代理多个项目及H5内页面刷新出现404问题。

在项目中会碰见需要在nginx代理多个项目,如果在加上uniapp开发的H5端的项目,你还要在nginx中区分PC端和手机H5端,这就会让人很头大!网上大部分的资料都是采用在nginx的conf配置文件中添加区分pc和手机端的变量例如:set…

软件测试项目实战

软件测试是使用人工或者自动的手段来运行或者测定某个软件系统的过程,其目的在于检验它是否满足规定的需求或弄清预期结果与实际结果之间的差别。 在软件投入使用前,要经过一系列的严格测试,才能保证交付质量。 一、引言 1.编写目的 本文档…

2024开发者浏览器必备扩展,不允许还有人不知道~

在开发过程中,优秀的扩展工具能够极大提升我们的工作效率,简化工作流程,并使得在浏览器中的开发和调试变得更加便捷。 根据市场占比,Chrome、Safari、Edge、Firefox、Opera 是前五大浏览器,其中Chrome浏览器占据了领先…

分享一个傻瓜式一键启动的加速器

主要发现开通一个号能电脑手机互通,原来电脑手机各一个加速器钱包在滴血。。。一个月也很便宜差不多二十多 链接放这了,有需要自提:首页-小熊加速器http://xxjsq.co/ytfa

TDesign了解及使用

文章目录 1、概述2、快速开始2.1使用 npm 安装2.2通过 浏览器引入 安装2.3、使用 3、简单案例3.1 路由创建3.2、 页面创建3.3、 Table组件3.4、序号展示3.5、 图片展示及预览3.6、 性别字段处理 1、概述 TDesign 是腾讯推出的设计系统,旨在提供一致的设计语言和视觉…

11Java面向对象高级(篇2,Java程序的核心套路!!!!)

更多java知识请点击上面专栏!!! 修道之始: 01Java基础入门(纯小白也能入门,速通Java,知识点归纳超级全面!!!2024版后端成仙起始篇!!!…

定时器(QTimer)与随机数生成器(QRandomGenerator)的应用实践——Qt(C++)

一、QTimer与QRandomGenerator (一)QTimer(定时器)[2] QTimer类为定时功能提供了一个高级编程接口。在使用QTimer时,实例化一个QTimer对象并将其timeout()发射信号与合适的信号槽相连接。通过调用QTimer的start()函数…

翼鸥教育:从OceanBase V3.1.4 到 V4.2.1,8套核心集群升级实践

引言:自2021年起,翼鸥教育便开始应用OceanBase社区版,两年间,先后部署了总计12套生产集群,其中核心集群占比超过四分之三,所承载的数据量已突破30TB。自2022年10月,OceanBase 社区发布了4.2.x 版…

AI绘画经验(stable-diffusion)

提示词理解 总的 AI绘画的优点是【想象力】,而不是自然语言的精确描述。 AI绘画只能控制【主体】和【风格】,姿势,表情,装饰,手指都太过于详细了。这也是【人类画师的魅力】 准确描述是徒劳的,只能通过【…