第三十一天|贪心算法| 56. 合并区间,738.单调递增的数字 , 968.监控二叉树

目录

56. 合并区间

方法1:fff

看方法2:fff优化版

方法3:

738.单调递增的数字

968.监控二叉树(贪心+二叉树)


56. 合并区间

判断重叠区间问题,与452和435是一个套路

方法1:fff

看方法2:fff优化版

  • 使用currentInterval来追踪当前合并的区间,而不是在原数组上修改值。
  • 每当找到一个不重叠的区间时,将currentInterval添加到result,并开始一个新的currentInterval
class Solution {public int[][] merge(int[][] intervals) {// 方法1:fff
//        if (intervals.length == 1){
//            return intervals;
//        }
//        Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));
//        int[][] result = new int[intervals.length][];
//        int row = 0;
//        for (int i = 0; i < intervals.length - 1; i++) {
//            if (intervals[i + 1][0] <= intervals[i][1]){
//                intervals[i + 1][0] = Math.min(intervals[i][0],intervals[i + 1][0]);
//                intervals[i + 1][1] = Math.max(intervals[i][1],intervals[i + 1][1]);
//            } else {
//                result[row++] = intervals[i];
//            }
//        }
//        result[row] = intervals[intervals.length - 1];
//        int[][] res = new int[row+1][];
//        int i = 0;
//        for (int[] r : result){
//            if (r == null){
//                break;
//            }
//            res[i++] = r;
//        }
//        return res;// 方法2:fff优化版if (intervals.length == 1){return intervals;}// 排序的时间复杂度是O(n log n), n是intervals数组的长度。Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));List<int[]> result = new LinkedList<>();int[] currentInterval = intervals[0]; // 使用currentInterval来追踪当前合并的区间,而不是在原数组上修改值。for (int i = 1; i < intervals.length ; i++) {if (intervals[i][0] <= currentInterval[1]){// 合并currentInterval[1] = Math.max(currentInterval[1], intervals[i][1]);} else {result.add(currentInterval);currentInterval = intervals[i];}}result.add(currentInterval);return result.toArray(new int[result.size()][]);}
}

方法3:

看方法2或者3都可以,复杂度是一样的。都挺好的。

  • 代码结构:方法3实现直接使用LinkedList<int[]>getLast()removeLast()来获取和更新最后一个合并区间,代码更加简洁且避免了在原数组上修改数据。
  • 操作顺序:方法3实现中,每次更新最后一个区间的值时,先移除再添加,这样减少了代码复杂性;而方法2实现会在原数组上更新,代码稍显繁琐。
    class Solution {public int[][] merge(int[][] intervals) {//方法3:LinkedList<int[]> res = new LinkedList<>();Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));res.add(intervals[0]);for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] <= res.getLast()[1]) {int start = res.getLast()[0];int end = Math.max(intervals[i][1], res.getLast()[1]);res.removeLast();res.add(new int[]{start, end});} else {res.add(intervals[i]);}}return res.toArray(new int[res.size()][]);}}

738.单调递增的数字

思路:

例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。

并且需要注意:用一个flag来标记从哪里开始赋值9。后面的都要赋值9。

遍历顺序:从后向前遍历

从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。

这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。

那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299

    class Solution {public int monotoneIncreasingDigits(int n) {if (n < 10) {return n;}String str = n + "";char[] ch = str.toCharArray();int index = ch.length;for (int i = ch.length - 1; i > 0; i--) {if (ch[i] < ch[i-1]) {index = i;ch[index-1]--;}}for (int i = index; i < ch.length; i++) {ch[i] = '9';}String res = new String(ch);return Integer.parseInt(res);}}

968.监控二叉树(贪心+二叉树)

思路:

摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。

所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。

那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。

所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  1. 二叉树的遍历 (后序遍历
  2. 如何隔两个节点放一个摄像头
  • 如何隔两个节点放一个摄像头

此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!

来看看这个状态应该如何转移,先来看看每个节点可能有几种状态,分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

(空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了)

  • 单层逻辑处理。

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

  • 情况2:左右节点至少有一个无覆盖的情况

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

  • 情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头

  • 情况4:头结点没有覆盖

以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

所以递归结束之后,还要判断根节点,如果没有覆盖,result++

   class Solution {int res = 0;public int minCameraCover(TreeNode root) {// 对根节点的状态做检验,防止根节点是无覆盖状态if (minCame2(root) == 0) {res++;}return res;}/*** 节点的状态值:* 0 表示 无覆盖* 1 表示 有摄像头* 2 表示 有覆盖* 后序遍历,根据左右节点的情况,来判读 自己的状态*/// 流程清晰版public int minCame(TreeNode root) {if (root == null) {// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头return 2;}int left = minCame(root.left);int right = minCame(root.right);//中,逻辑处理// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头if (left == 2 && right == 2) {return 0;} else if (left == 0 || right == 0) {// 左右节点是无覆盖状态,那 根节点此时应该放一个摄像头res++;return 1;} else {//左右节点至少存在 1个摄像头,那么本节点就是处于被覆盖状态return 2;}}// 简化分支版本public int minCame2(TreeNode root) {if (root == null) {return 2;}int left = minCame2(root.left);int right = minCame2(root.right);// 有任意一个子节点为无覆盖,就需要当前节点放相机if (left == 0 || right == 0) {res++;return 1;}if (left == 2 && right == 2) { // 左右子树都是有覆盖,那么此时返回无覆盖return 0;}return 2; // 剩下情况就是左右子树有可能为 1 有摄像头,即当前节点被监控}}

第三十一天的总算是结束了,直冲Day32!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471346.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

火车车厢重排问题,C++详解

目录 实验题目 解题思路 1先看缓冲队列队头是否符合要求 2看队头元素是否符合要求 完整代码 运行结果 实验题目 火车车厢重排问题 实验说明&#xff1a;转轨站示意图如下&#xff1a; 火车车厢重排过程如下&#xff1a; 火车车厢重排算法伪代码如下&#xff1a; 解题思路…

算法学习第一弹——C++基础

早上好啊&#xff0c;大佬们。来看看咱们这回学点啥&#xff0c;在前不久刚出完C语言写的PTA中L1的题目&#xff0c;想必大家都不过瘾&#xff0c;感觉那些题都不过如此&#xff0c;所以&#xff0c;为了我们能更好的去处理更难的题目&#xff0c;小白兔决定奋发图强&#xff0…

LabVIEW大数据处理

在物联网、工业4.0和科学实验中&#xff0c;大数据处理需求逐年上升。LabVIEW作为一款图形化编程语言&#xff0c;凭借其强大的数据采集和分析能力&#xff0c;广泛应用于实时数据处理和控制系统中。然而&#xff0c;在面对大数据处理时&#xff0c;LabVIEW也存在一些注意事项。…

AUTOSAR_EXP_ARAComAPI的7章笔记(3)

☞返回总目录 相关总结&#xff1a;AutoSar AP简单多绑定总结 7.3 多绑定 如在 5.4.3 小节中简要讨论的&#xff0c;某个代理类 / 骨架类的不同实例之间的技术传输是不同的&#xff0c;多绑定描述了这种情况的解决方案。多种技术原因都可能导致这种情况出现&#xff1a; 代…

一键生成本地SSL证书:打造HTTPS安全环境

一键生成本地SSL证书&#xff1a;打造HTTPS安全环境 日光下的寒林没有一丝杂质&#xff0c;空气里的冰冷仿佛来自故乡遥远的北国&#xff0c;带着一些相思&#xff0c;还有细微几至不可辨认的骆驼的铃声。–《心美&#xff0c;一切皆美》 在本地开发环境中启用 HTTPS 一直是许多…

mysql 配置文件 my.cnf 增加 lower_case_table_names = 1 服务启动不了的原因

原因&#xff1a;在MySQL8.0之后的版本&#xff0c;只允许在数据库初始化时指定&#xff0c;之后不允许修改了 mysql 配置文件 my.cnf 增加 lower_case_table_names 1 服务启动不了 报错信息&#xff1a;Job for mysqld.service failed because the control process exited …

Zookeeper的安装与使用

一、简介 1.1、概念 ZooKeeper 是一个开源的分布式协调服务&#xff0c;主要用于解决分布式系统中的数据一致性问题。它提供了一种可靠的机制来管理和协调分布式系统的各个节点。ZooKeeper 的设计目标是简化分布式应用的开发&#xff0c;提供简单易用的接口和高性能、高稳定性…

Vue3.js - 一文看懂Vuex

1. 前言 Vuex 是 Vue.js 的官方状态管理库&#xff0c;用于在 Vue 应用中管理组件之间共享的状态。Vuex 适用于中大型应用&#xff0c;它将组件的共享状态集中管理&#xff0c;可以避免组件间传递 props 或事件的复杂性。 2. 核心概念 我们可以将Vuex想象为一个大型的Vue&…

图论-代码随想录刷题记录[JAVA]

文章目录 前言Floyd 算法dijkstra&#xff08;朴素版&#xff09;最小生成树之primkruskal算法 前言 新手小白记录第一次刷代码随想录 1.自用 抽取精简的解题思路 方便复盘 2.代码尽量多加注释 3.记录踩坑 4.边刷边记录&#xff0c;更有成就感&#xff01; 5.解题思路绝大部分来…

《Python网络安全项目实战》项目5 编写网站扫描程序

《Python网络安全项目实战》项目5 编写网站扫描程序 项目目标&#xff1a;任务5.1 暴力破解网站目录和文件位置任务描述任务分析任务实施相关知识任务评价 任务5.2 制作网页JPG爬虫任务分析任务实施相关知识任务评价任务拓展 WEB网站安全渗透测试过程中需要进行目录扫描和网站爬…

时序论文20|ICLR20 可解释时间序列预测N-BEATS

论文标题&#xff1a;N-BEATS N EURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING 论文链接&#xff1a;https://arxiv.org/pdf/1905.10437.pdf 前言 为什么时间序列可解释很重要&#xff1f;时间序列的可解释性是确保模型预测结果可靠、透明且易…

硬件工程师之电子元器件—二极管(4)之热量对二极管温度特性的影响

写在前面 本系列文章主要讲解二极管的相关知识,希望能帮助更多的同学认识和了解二极管。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 二极管 7. 热量对二极管温度特性的影响 半导体器件的电气特性通常对环境温度和工作结温敏感。 Si二极管的特性在工作范围内通常如下…

Java算法OJ(7)随机快速排序

目录 1.前言 2.正文 1. 快速排序的基本原理 2. 随机快速排序的改进 3. 随机快速排序的步骤 3.小结 1.前言 哈喽大家好吖&#xff0c;今儿给大家带来算法—随机快速排序相关知识点&#xff0c;废话不多说让我们开始。 2.正文 在了解随机快排之前&#xff0c;先了解一下…

基于 Python Django 的二手房间可视化系统分析

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

用MVVM设计模式提升WPF开发体验:分层架构与绑定实例解析

MVVM&#xff08;Model-View-ViewModel&#xff09;是一种架构模式&#xff0c;广泛应用于现代前端开发&#xff0c;尤其是在微软的WPF&#xff08;Windows Presentation Foundation&#xff09;应用程序中。它旨在通过将视图&#xff08;UI&#xff09;与业务逻辑&#xff08;…

如何进行产线高阶能耗数据的计算和可视化?

一、前言 在当前经济下行时期&#xff0c;越来越来多企业开始对产线进行数字化转型&#xff0c;提高企业竞争力。在产线数字化转型过程中&#xff0c;产线高阶能耗数据的计算和可视化是比较重要的一环&#xff0c;今天小编就和大家分享如何对产线能耗数据进行计算和可视化。 …

亲测有效:Maven3.8.1使用Tomcat8插件启动项目

我本地maven的settings.xml文件中的配置&#xff1a; <mirror><id>aliyunmaven</id><mirrorOf>central</mirrorOf><name>阿里云公共仓库</name><url>https://maven.aliyun.com/repository/public</url> </mirror>…

开源项目推荐——OpenDroneMap无人机影像数据处理

实景三维作为GIS最火的课题&#xff0c;最近在想做一套自己的三维构建工具&#xff0c;考察了几个开源项目&#xff0c;把自己的搜索过程用csdn记录下来&#xff0c;希望也能帮助到各位同仁。 OpenDroneMap&#xff08;ODM&#xff09;是一个开源项目&#xff0c;旨在处理无人…

蓝桥杯c++算法学习【2】之搜索与查找(九宫格、穿越雷区、迷宫与陷阱、扫地机器人:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 搜索与查找 一、九宫格 【问题描述】 小明最近在教邻居家的小朋友小学奥数&#xff0c;而最近正好讲述到了三阶幻方这个部分&#xff0c;三 …

Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解

title: Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解 date: 2024/11/14 updated: 2024/11/14 author: cmdragon excerpt: schema:beforeWrite 钩子是 Vite 提供的一个功能强大的生命周期钩子,允许开发者在 JSON Schema 被写入之前执行自定义操作。利用这个钩子,您可以…