图论-代码随想录刷题记录[JAVA]

文章目录

  • 前言
  • Floyd 算法
  • dijkstra(朴素版)
  • 最小生成树之prim
  • kruskal算法


前言

新手小白记录第一次刷代码随想录
1.自用 抽取精简的解题思路 方便复盘
2.代码尽量多加注释
3.记录踩坑
4.边刷边记录,更有成就感!
5.解题思路绝大部分来自代码随想录【仅自用 无商用!!!】


Floyd 算法

【题目描述】

小明喜欢去公园散步,公园内布置了许多的景点,相互之间通过小路连接,小明希望在观看景点的同时,能够节省体力,走最短的路径。

给定一个公园景点图,图中有 N 个景点(编号为 1 到 N),以及 M 条双向道路连接着这些景点。每条道路上行走的距离都是已知的。

小明有 Q 个观景计划,每个计划都有一个起点 start 和一个终点 end,表示他想从景点 start 前往景点 end。由于小明希望节省体力,他想知道每个观景计划中从起点到终点的最短路径长度。 请你帮助小明计算出每个观景计划的最短路径长度。

【输入描述】

第一行包含两个整数 N, M, 分别表示景点的数量和道路的数量。

接下来的 M 行,每行包含三个整数 u, v, w,表示景点 u 和景点 v 之间有一条长度为 w 的双向道路。

接下里的一行包含一个整数 Q,表示观景计划的数量。

接下来的 Q 行,每行包含两个整数 start, end,表示一个观景计划的起点和终点。

【输出描述】

对于每个观景计划,输出一行表示从起点到终点的最短路径长度。如果两个景点之间不存在路径,则输出 -1。

【输入示例】

7 3 1 2 4 2 5 6 3 6 8 2 1 2 2 3

【输出示例】

4 -1

【提示信息】

从 1 到 2 的路径长度为 4,2 到 3 之间并没有道路。

1 <= N, M, Q <= 1000.

思路

Floyd算法核心思想是动态规划。

  • 例如我们再求节点1 到 节点9 的最短距离,用二维数组来表示即:grid[1][9],如果最短距离是10 ,那就是 grid[1][9] =10。

  • 那 节点1 到 节点9 的最短距离 是不是可以由 节点1 到节点5的最短距离 + 节点5到节点9的最短距离组成呢? 即 grid[1][9] = grid[1][5] + grid[5][9]

  • 节点1 到节点5的最短距离 是不是可以有 节点1 到 节点3的最短距离 + 节点3 到 节点5 的最短距离组成呢? 即 grid[1][5] = grid[1][3] + grid[3][5]

  • 以此类推,节点1 到 节点3的最短距离 可以由更小的区间组成。那么这样我们是不是就找到了,子问题推导求出整体最优方案的递归关系呢。

  • 节点1 到 节点9 的最短距离 可以由 节点1 到节点5的最短距离 + 节点5到节点9的最短距离组成, 也可以有 节点1 到节点7的最短距离 + 节点7 到节点9的最短距离的距离组成。

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();  // 顶点数int m = sc.nextInt();  // 边数// 初始化距离矩阵,最大值设置为10005final int INF = 10005;int[][] grid = new int[n + 1][n + 1];// 初始化 grid 数组for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (i != j) {grid[i][j] = INF;}}}// 输入边信息for (int i = 0; i < m; i++) {int p1 = sc.nextInt();int p2 = sc.nextInt();int val = sc.nextInt();grid[p1][p2] = val;grid[p2][p1] = val;  // 双向图}// Floyd-Warshall 算法//注意k要放在最外层for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (grid[i][k] + grid[k][j] < grid[i][j]) {grid[i][j] = grid[i][k] + grid[k][j];}}}}// 输出查询结果int z = sc.nextInt();  // 查询次数while (z-- > 0) {int start = sc.nextInt();int end = sc.nextInt();if (grid[start][end] == INF) {System.out.println(-1);} else {System.out.println(grid[start][end]);}}sc.close();  // 关闭Scanner}
}

dijkstra(朴素版)

【题目描述】

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。

小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。

小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

【输入描述】

第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。

接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。

【输出描述】

输出一个整数,代表小明从起点到终点所花费的最小时间。

思路

  • 第一步,选源点到哪个节点近且该节点未被访问过
  • 第二步,该最近节点被标记访问过
  • 第三步,更新非访问节点到源点的距离(即更新minDist数组
  • minDist数组 用来记录 每一个节点距离源点的最小距离。
  • 示例中节点编号是从1开始,所以为了让大家看的不晕,minDist数组下标我也从 1 开始计数,下标0 就不使用了,这样 下标和节点标号就可以对应上了,避免大家搞混

模拟过程

0、初始化

minDist数组数值初始化为int最大值。

这里在强点一下 minDist数组的含义:记录所有节点到源点的最短路径,那么初始化的时候就应该初始为最大值,这样才能在后续出现最短路径的时候及时更新。
代码随想录朴素版dijkstra
源点(节点1) 到自己的距离为0,所以 minDist[1] = 0

此时所有节点都没有被访问过,所以 visited数组都为0

  1. 模拟过程

以下为dijkstra 三部曲

1.1 第一次模拟

1、选源点到哪个节点近且该节点未被访问过

源点距离源点最近,距离为0,且未被访问。

2、该最近节点被标记访问过

标记源点访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:
在这里插入图片描述
更新 minDist数组,即:源点(节点1) 到 节点2 和 节点3的距离。

源点到节点2的最短距离为1,小于原minDist[2]的数值max,更新minDist[2] = 1
源点到节点3的最短距离为4,小于原minDist[3]的数值max,更新minDist[3] = 4

1.2 第二次模拟

1、选源点到哪个节点近且该节点未被访问过

未访问过的节点中,源点到节点2距离最近,选节点2

2、该最近节点被标记访问过

节点2被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:
在这里插入图片描述
更新 minDist数组,即:源点(节点1) 到 节点6 、 节点3 和 节点4的距离。

以后的过程以此类推

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);// 输入节点数 n 和边数 mint n = sc.nextInt();int m = sc.nextInt();// 定义一个邻接矩阵,初始化为一个很大的数final int INF = Integer.MAX_VALUE;int[][] grid = new int[n + 1][n + 1];// 初始化 grid 为 INF,表示没有直接路径for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (i != j) {grid[i][j] = INF;}}}// 输入边的信息for (int i = 0; i < m; i++) {int p1 = sc.nextInt();int p2 = sc.nextInt();int val = sc.nextInt();grid[p1][p2] = val;}// 设置起点和终点int start = 1;int end = n;// 存储从源点到每个节点的最短距离int[] minDist = new int[n + 1];// 记录顶点是否被访问过boolean[] visited = new boolean[n + 1];// 初始化最短距离数组,起始点到自身的距离为0,其他为INFfor (int i = 1; i <= n; i++) {minDist[i] = INF;}minDist[start] = 0;// 遍历所有节点,执行Dijkstra算法for (int i = 1; i <= n; i++) {int minVal = INF;int cur = -1;// 选择距离起点最近且未访问过的节点for (int v = 1; v <= n; v++) {if (!visited[v] && minDist[v] < minVal) {minVal = minDist[v];cur = v;}}// 如果当前节点无法访问,则跳出循环(即剩下的节点不可达)if (cur == -1) break;visited[cur] = true; // 标记该节点已被访问// 更新非访问节点到源点的最短距离for (int v = 1; v <= n; v++) {if (!visited[v] && grid[cur][v] != INF && minDist[cur] + grid[cur][v] < minDist[v]) {minDist[v] = minDist[cur] + grid[cur][v];}}}// 输出结果,如果终点不可达,输出 -1if (minDist[end] == INF) {System.out.println(-1);} else {System.out.println(minDist[end]);}sc.close(); // 关闭Scanner}
}

最小生成树之prim

卡码网:53.寻宝

题目描述:

在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。

不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将 所有岛屿联通起来。

给定一张地图,其中包括了所有的岛屿,以及它们之间的距离。以最小化公路建设长度,确保可以链接到所有岛屿。

输入描述:

第一行包含两个整数V 和 E,V代表顶点数,E代表边数 。顶点编号是从1到V。例如:V=2,一个有两个顶点,分别是1和2。

接下来共有 E 行,每行三个整数 v1,v2 和 val,v1 和 v2 为边的起点和终点,val代表边的权值。

输出描述:

输出联通所有岛屿的最小路径总距离

输入示例:

7 11
1 2 1
1 3 1
1 5 2
2 6 1
2 4 2
2 3 2
3 4 1
4 5 1
5 6 2
5 7 1
6 7 1
输出示例:

6

思路

  • 第一步,选距离生成树最近节点

  • 第二步,最近节点加入生成树

  • 第三步,更新非生成树节点到生成树的距离(即更新minDist数组)

  • minDist数组用来记录 每一个节点距离最小生成树的最近距离。

  • 示例中节点编号是从1开始,minDist数组下标也从 1 开始计数。

初始状态

minDist 数组 里的数值初始化为 最大数,因为本题 节点距离不会超过 10000,所以 初始化最大数为 10001就可以。

现在 还没有最小生成树,默认每个节点距离最小生成树是最大的,这样后面我们在比较的时候,发现更近的距离,才能更新到 minDist 数组上。
在这里插入图片描述

模拟过程(只模拟两轮)


第一轮

1、prim三部曲,第一步:选距离生成树最近节点

选择距离最小生成树最近的节点,加入到最小生成树,刚开始还没有最小生成树,所以随便选一个节点加入就好(因为每一个节点一定会在最小生成树里,所以随便选一个就好),那我们选择节点1 (符合遍历数组的习惯,第一个遍历的也是节点1)

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1 已经算最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

在这里插入图片描述
注意图中我标记了 minDist数组里更新的权值,是哪两个节点之间的权值,例如 minDist[2] =1 ,这个 1 是 节点1 与 节点2 之间的连线,清楚这一点对最后我们记录 最小生成树的权值总和很重要。

第二轮
1、prim三部曲,第一步:选距离生成树最近节点

选取一个距离 最小生成树(节点1) 最近的非生成树里的节点,节点2,3,5 距离 最小生成树(节点1) 最近,选节点 2(其实选 节点3或者节点2都可以,距离一样的)加入最小生成树。

2、prim三部曲,第二步:最近节点加入生成树

此时 节点1 和 节点2,已经是最小生成树的节点。

3、prim三部曲,第三步:更新非生成树节点到生成树的距离(即更新minDist数组)

接下来,我们要更新节点距离最小生成树的距离,如图:
在这里插入图片描述

import java.util.*;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int v = scanner.nextInt();int e = scanner.nextInt();// 初始化邻接矩阵,所有值初始化为一个大值,表示无穷大int[][] grid = new int[v + 1][v + 1];for (int i = 1; i <= v; i++) {Arrays.fill(grid[i], 10001);}// 读取边的信息并填充邻接矩阵for (int i = 0; i < e; i++) {int x = scanner.nextInt();int y = scanner.nextInt();int k = scanner.nextInt();grid[x][y] = k;grid[y][x] = k;}// 所有节点到最小生成树的最小距离int[] minDist = new int[v + 1];Arrays.fill(minDist, 10001);// 记录节点是否在树里boolean[] isInTree = new boolean[v + 1];// Prim算法主循环 只需要循环v-1次建立v-1条边for (int i = 1; i < v; i++) {int cur = -1;// 用于记录距离生成树最近的节点int minVal = Integer.MAX_VALUE; // 记录最短距离// 选择距离生成树最近的节点for (int j = 1; j <= v; j++) {// 如果这个点不在生成树里面,且它的距离小于当前最小值if (!isInTree[j] && minDist[j] < minVal) {minVal = minDist[j];cur = j;}}// 将最近的节点加入生成树isInTree[cur] = true;// 更新非生成树节点到生成树的距离for (int j = 1; j <= v; j++) {//当前cur节点比较if (!isInTree[j] && grid[cur][j] < minDist[j]) {minDist[j] = grid[cur][j];}}}// 统计结果int result = 0;for (int i = 2; i <= v; i++) {result += minDist[i];// 从2开始,跳过起始节点}System.out.println(result);scanner.close();}
}

kruskal算法

  • 题目同上题,找最小生成树。

思路

  • prim 算法是维护节点的集合,而 Kruskal 是维护边的集合。
  • 边的权值排序,因为要优先选最小的边加入到生成树里
  • 遍历排序后的边
    • 如果边首尾的两个节点在同一个集合,说明如果连上这条边图中会出现环
    • 如果边首尾的两个节点不在同一个集合,加入到最小生成树,并把两个节点加入同一个集合

模拟
在这里插入图片描述
排序后的边顺序为[(1,2) (4,5) (1,3) (2,6) (3,4) (6,7) (5,7) (1,5) (3,2) (2,4) (5,6)]

(1,2) 表示节点1 与 节点2 之间的边。权值相同的边,先后顺序无所谓。

开始从头遍历排序后的边。

选边(1,2),节点1 和 节点2 不在同一个集合,所以生成树可以添加边(1,2),并将 节点1,节点2 放在同一个集合。
在这里插入图片描述选边(4,5),节点4 和 节点 5 不在同一个集合,生成树可以添加边(4,5) ,并将节点4,节点5 放到同一个集合。
在这里插入图片描述

在上面的讲解中,看图的话 大家知道如何判断 两个节点 是否在同一个集合(是否有绿色的线连在一起),以及如何把两个节点加入集合(就在图中把两个节点连上)

  • 但在代码中,如果将两个节点加入同一个集合,又如何判断两个节点是否在同一个集合呢?
    • 用并查集
import java.util.*;class Edge {int l, r, val;Edge(int l, int r, int val) {this.l = l;this.r = r;this.val = val;}
}
public class Main {private static int n = 10001;private static int[] father = new int[n];// 并查集初始化public static void init() {for (int i = 0; i < n; i++) {father[i] = i;}}// 并查集的查找操作public static int find(int u) {if (u == father[u]) return u;return father[u] = find(father[u]);}public static void join(int u, int v) {u = find(u);v = find(v);if (u == v) return;father[v] = u;}public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int v = scanner.nextInt();int e = scanner.nextInt();List<Edge> edges = new ArrayList<>();int result_val = 0;for (int i = 0; i < e; i++) {int v1 = scanner.nextInt();int v2 = scanner.nextInt();int val = scanner.nextInt();edges.add(new Edge(v1, v2, val));}//对边进行排序edges.sort(Comparator.comparingInt(edge -> edge.val));// 并查集初始化init();// 从头开始遍历边for (Edge edge : edges) {int x = find(edge.l);int y = find(edge.r);if (x != y) {result_val += edge.val;join(x, y);}}System.out.println(result_val);scanner.close();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/471334.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Python网络安全项目实战》项目5 编写网站扫描程序

《Python网络安全项目实战》项目5 编写网站扫描程序 项目目标&#xff1a;任务5.1 暴力破解网站目录和文件位置任务描述任务分析任务实施相关知识任务评价 任务5.2 制作网页JPG爬虫任务分析任务实施相关知识任务评价任务拓展 WEB网站安全渗透测试过程中需要进行目录扫描和网站爬…

时序论文20|ICLR20 可解释时间序列预测N-BEATS

论文标题&#xff1a;N-BEATS N EURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES FORECASTING 论文链接&#xff1a;https://arxiv.org/pdf/1905.10437.pdf 前言 为什么时间序列可解释很重要&#xff1f;时间序列的可解释性是确保模型预测结果可靠、透明且易…

硬件工程师之电子元器件—二极管(4)之热量对二极管温度特性的影响

写在前面 本系列文章主要讲解二极管的相关知识,希望能帮助更多的同学认识和了解二极管。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 二极管 7. 热量对二极管温度特性的影响 半导体器件的电气特性通常对环境温度和工作结温敏感。 Si二极管的特性在工作范围内通常如下…

Java算法OJ(7)随机快速排序

目录 1.前言 2.正文 1. 快速排序的基本原理 2. 随机快速排序的改进 3. 随机快速排序的步骤 3.小结 1.前言 哈喽大家好吖&#xff0c;今儿给大家带来算法—随机快速排序相关知识点&#xff0c;废话不多说让我们开始。 2.正文 在了解随机快排之前&#xff0c;先了解一下…

基于 Python Django 的二手房间可视化系统分析

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

用MVVM设计模式提升WPF开发体验:分层架构与绑定实例解析

MVVM&#xff08;Model-View-ViewModel&#xff09;是一种架构模式&#xff0c;广泛应用于现代前端开发&#xff0c;尤其是在微软的WPF&#xff08;Windows Presentation Foundation&#xff09;应用程序中。它旨在通过将视图&#xff08;UI&#xff09;与业务逻辑&#xff08;…

如何进行产线高阶能耗数据的计算和可视化?

一、前言 在当前经济下行时期&#xff0c;越来越来多企业开始对产线进行数字化转型&#xff0c;提高企业竞争力。在产线数字化转型过程中&#xff0c;产线高阶能耗数据的计算和可视化是比较重要的一环&#xff0c;今天小编就和大家分享如何对产线能耗数据进行计算和可视化。 …

亲测有效:Maven3.8.1使用Tomcat8插件启动项目

我本地maven的settings.xml文件中的配置&#xff1a; <mirror><id>aliyunmaven</id><mirrorOf>central</mirrorOf><name>阿里云公共仓库</name><url>https://maven.aliyun.com/repository/public</url> </mirror>…

开源项目推荐——OpenDroneMap无人机影像数据处理

实景三维作为GIS最火的课题&#xff0c;最近在想做一套自己的三维构建工具&#xff0c;考察了几个开源项目&#xff0c;把自己的搜索过程用csdn记录下来&#xff0c;希望也能帮助到各位同仁。 OpenDroneMap&#xff08;ODM&#xff09;是一个开源项目&#xff0c;旨在处理无人…

蓝桥杯c++算法学习【2】之搜索与查找(九宫格、穿越雷区、迷宫与陷阱、扫地机器人:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 搜索与查找 一、九宫格 【问题描述】 小明最近在教邻居家的小朋友小学奥数&#xff0c;而最近正好讲述到了三阶幻方这个部分&#xff0c;三 …

Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解

title: Nuxt.js 应用中的 schema:beforeWrite 事件钩子详解 date: 2024/11/14 updated: 2024/11/14 author: cmdragon excerpt: schema:beforeWrite 钩子是 Vite 提供的一个功能强大的生命周期钩子,允许开发者在 JSON Schema 被写入之前执行自定义操作。利用这个钩子,您可以…

当你想要conda安装遇到UnavailableInvalidChannel: HTTP 404 NOT FOUND for channel的问题

想要装个虚拟环境&#xff0c;结果遇到404。 看了第一个GitHub帖子中的一句话 UnavailableInvalidChannel: The channel is not accessible or is invalid. Navigator not launching. Issue #9473 conda/conda GitHub 想说那我就把这个not found的channel删掉吧&#xff…

DAY112代码审计PHP开发框架POP链利用Yii反序列化POP利用链

一、pop1链的跟踪 1、路由关系 2、漏洞触发口unserialize(base64_decode($data)); 2、__destruct()&#xff0c;魔术法方法调用close函数方法 3、未找到利用链&#xff0c;尝试__call魔术方法 4、逆推找call_user_func 函数 第一部分 namespace yii\db; class BatchQueryResu…

C++STL容器——map和set

目录 一.关联式容器 二.键值对 三.树形结构的关联式容器 1.set 2.map 3.multiset和multimap 四.整体代码 map_set.cpp 一.关联式容器 在初阶阶段&#xff0c;我们已经接触过STL中的部分容器&#xff0c;比如&#xff1a;vector、list、deque、 forward_list(C11)等&…

Java 责任链模式 减少 if else 实战案例

一、场景介绍 假设有这么一个朝廷&#xff0c;它有 县-->府-->省-->朝廷&#xff0c;四级行政机构。 这四级行政机构的关系如下表&#xff1a; 1、县-->府-->省-->朝廷&#xff1a;有些地方有完整的四级行政机构。 2、县-->府-->朝廷&#xff1a;直…

Rocky、Almalinux、CentOS、Ubuntu和Debian系统初始化脚本v9版

Rocky、Almalinux、CentOS、Ubuntu和Debian系统初始化脚本 Shell脚本源码地址&#xff1a; Gitee&#xff1a;https://gitee.com/raymond9/shell Github&#xff1a;https://github.com/raymond999999/shell脚本可以去上面的Gitee或Github代码仓库拉取。 支持的功能和系统&am…

EXCEL延迟退休公式

如图&#xff1a; A B为手工输入 C2EOMONTH(A2,B2*12) D2EOMONTH(C2,IF(C2>DATEVALUE("2025-1-1"),INT((DATEDIF(DATEVALUE("2025-1-1"),C2,"m")4)/4),0)) E2EOMONTH(A2,B2*12IF(EOMONTH(A2,B2*12)>DATEVALUE("2025-1-1"),INT(…

ARM架构中断与异常向量表机制解析

往期内容 本专栏往期内容&#xff0c;interrtupr子系统&#xff1a; 深入解析Linux内核中断管理&#xff1a;从IRQ描述符到irq domain的设计与实现Linux内核中IRQ Domain的结构、操作及映射机制详解中断描述符irq_desc成员详解Linux 内核中断描述符 (irq_desc) 的初始化与动态分…

论文翻译 | The Capacity for Moral Self-Correction in Large Language Models

摘要 我们测试了一个假设&#xff0c;即通过人类反馈强化学习&#xff08;RLHF&#xff09;训练的语言模型具有“道德自我纠正”的能力——避免产生有害的输出——如果指示这样做的话。我们在三个不同的实验中发现了支持这一假设的有力证据&#xff0c;每个实验都揭示了道德自…

华为云前台用户可挂载数据盘和系统盘是怎么做到的?

用户可以选择磁盘类型和容量&#xff0c;其后台是管理员对接存储设备 1.管理员如何在后台对接存储设备&#xff08;特指业务存储&#xff09; 1.1FusionSphere CPS&#xff08;Cloud Provisionivice&#xff09;云装配服务 它是first node https://10.200.4.159:8890 对接存…