游戏引擎学习第八天

视频参考:
https://www.bilibili.com/video/BV1ouUPYAErK/

理解下面的代码

在这里插入图片描述

关于虚函数

代码分解

  1. 结构体 foo 的定义

    struct foo {int32 X;int64 Y;virtual void Bar(int c);
    };
    
    • foo 结构体有两个成员变量:Xint32 类型)和 Yint64 类型)。
    • foo 还定义了一个虚拟函数 Bar(int c)。在 C++ 中,虚拟函数会在类的对象中创建虚拟函数表(vtable)的一部分。
  2. 虚拟函数 Bar 的定义

    void foo::Bar(int c){c += this->X;
    }
    
    • 这是 foo 结构体中的虚拟函数 Bar 的实现。在函数中,c 变量的值会增加 this->X 的值。this 指针指向当前对象,因此 this->X 访问的是当前对象的成员变量 X
  3. 创建 foo 类型的对象并调用 Bar 函数

    Foo foo;
    foo.Bar(5);
    
    • 创建一个 foo 类型的对象 foo
    • 调用 foo.Bar(5),这将触发虚函数机制。虚函数 Bar 会通过 foo 对象的虚拟函数表来调用。

虚函数表(vtable)机制

  • 虚函数表(vtable):每个包含虚拟函数的类在运行时都会创建一个虚函数表,虚函数表的每个条目对应类中定义的虚拟函数。类的每个对象会持有一个指向虚函数表的指针(通常被称为 vptr)。

  • vtable 在上面代码中的作用:当你调用 foo.Bar(5) 时,C++ 会查找 foo 对象的虚拟函数表(vtable)。因为 Bar 是一个虚函数,所以它会根据 foo 对象的 vptr 查找 Bar 的地址,并执行相应的函数体。这里,Bar 通过 vtable 被动态查找并执行。

vtable 查找过程

在内存中,编译器会为包含虚拟函数的类分配一个虚函数表(vtable)。每个类的对象会有一个指向其虚函数表的指针 vptr,指向这个类的虚拟函数表。虚函数表的内容是类中每个虚拟函数的地址。

  1. 创建对象时,编译器为 foo 类型的对象 foo 插入一个指针 vptr,该指针指向 foo 类型的 vtable。

  2. 调用 foo.Bar(5),编译器使用对象 foovptr 查找 Bar 函数的地址,并执行 Bar 函数。

this->X 和 vtable 结合

  • this->X 是通过 this 指针访问当前对象的成员变量 X。当 foo.Bar(5) 被调用时,this 指针指向的是当前 foo 类型的对象,因此 this->X 访问的是 foo 对象中的成员 X

总结

  • vtable 是 C++ 用于支持多态的机制。每个包含虚拟函数的类都有一个虚拟函数表,表中存储了虚拟函数的地址。
  • foo 对象有一个指向 vtable 的指针,这个指针使得虚函数能够被动态查找和调用。
  • 当调用 foo.Bar(5) 时,C++ 会通过 foo 对象的 vtable 查找并调用 Bar 函数。

在这里插入图片描述

在这里插入图片描述

写入声音数据通常是将数据放入 GlobalSecondaryBuffer 中

在这里插入图片描述

生成方波数据

要用到的变量

在这里插入图片描述

锁定缓冲区

以下是带有注释的 Lock 函数声明和解释:

STDMETHOD(Lock) (THIS_ DWORD dwOffset,                            // 缓冲区偏移量,指定从缓冲区起始位置偏移多少字节开始锁定区域DWORD dwBytes,                             // 锁定的字节数,指定要锁定多少字节的数据_Outptr_result_bytebuffer_(*pdwAudioBytes1) LPVOID *ppvAudioPtr1,  // 输出参数,返回锁定区域的内存指针,应用程序可以访问此内存区进行读取或写入_Out_ LPDWORD pdwAudioBytes1,              // 输出参数,返回第一个锁定区域实际锁定的字节数_Outptr_opt_result_bytebuffer_(*pdwAudioBytes2) LPVOID *ppvAudioPtr2,  // 可选的输出参数,返回第二个锁定区域的内存指针(用于双缓冲或环形缓冲区)_Out_opt_ LPDWORD pdwAudioBytes2,         // 可选的输出参数,返回第二个锁定区域实际锁定的字节数DWORD dwFlags                             // 标志参数,用于指定锁定缓冲区时的行为,如锁定写光标位置、读取光标位置或环形缓冲区等
) PURE;  // 纯虚函数,需要在实际的派生类中实现

在音频缓冲区中,DirectSound 使用一种“环形缓冲区”机制来允许应用程序连续不断地填充音频数据,避免播放的中断。Region1Region2 是 DirectSound 锁定(Lock)时返回的两个数据区域,用于在不同情形下灵活填充音频数据。

环形缓冲区与 Region1 和 Region2 的含义

在 DirectSound 中,环形缓冲区是一个逻辑上连续但物理上循环的缓冲区。我们可以把它想象成一个圆形的数据结构,数据在头尾连接起来,因此称为环形。

当需要写入的区域未跨越缓冲区尾部
  1. Region1 和 Region2 的理解

    • BytesToLockBytesToWrite(需要写入的数据量)都在缓冲区的中间位置,并未跨越缓冲区尾部时,DirectSound 的 Lock 操作仅返回一个写入区域 Region1,并且 Region2 的大小为零。
    • 此时,Region1 包含所有需要写入的数据的空间。

    这种情况相当于只需要在缓冲区中间写入,不需要“环回”。

  2. 代码示例

    • 当需要写入的数据量没有跨越缓冲区的尾部时,Lock 会将 Region1 设置为包含全部写入数据的区域。
当需要写入的区域跨越缓冲区尾部
  1. Region1 和 Region2 的使用

    • BytesToLockBytesToWrite 跨越缓冲区尾部时,DirectSound 将返回两个区域:Region1Region2
    • Region1BytesToLock 开始,到缓冲区末尾结束。
    • Region2 则是缓冲区的开头到所需数据写入完毕的区域,连接着 Region1 的结束位置,形成环形的写入。
  2. 代码意义

    • 通过这种方式,Region1Region2 实际上可以有效地填充到缓冲区的尾部并从头开始填充,确保数据的无缝循环。
    • 这在实时音频流播放中十分重要,因为它可以有效避免音频播放的中断,实现无缝的声音输出。

小结

  • Region1Region2 的分区方式帮助代码处理缓冲区的“尾部到开头”的情况,使得数据填充可以跨越缓冲区的边界,保证连续不断的音频输出。
  • 这样做确保了缓冲区中的音频数据在循环播放时的流畅性,避免音频在缓冲区边界处产生中断和延迟。

在这里插入图片描述

在这里插入图片描述

像返回的Region1 和 Region2 中写入方波数据

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

播放音频

Play 方法用于启动音频缓冲区的播放。它是 DirectSound 接口中的一个方法,允许开发者控制音频缓冲区的播放行为。

STDMETHOD(Play) (THIS_ DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags) PURE;

参数解释

  • dwReserved1:保留参数,通常设置为 0,因为 DirectSound 对该参数未作具体定义。

  • dwPriority:缓冲区播放的优先级。此参数仅在使用声音管理的环境中有意义。若不使用声音管理,一般也设置为 0

  • dwFlags:用于控制播放模式的标志。常用标志有:

    • DSBPLAY_LOOPING:让缓冲区中的音频数据循环播放,即当音频播放到结尾时会自动返回开头重新播放,适合背景音乐或持续播放的音效。
    • DSBPLAY_TERMINATEBY_PRIORITY:此标志用于声音管理模式下,通过优先级中止其他音频缓冲区的播放。未使用声音管理时通常不设置。

使用场景

调用 Play 方法后,缓冲区开始播放指定的音频数据,应用场景包括:

  • 音效播放:用于播放短暂的音效,比如按键声或提示音,通常是非循环播放。
  • 背景音乐:通过 DSBPLAY_LOOPING 标志,让背景音乐循环播放。

代码示例

假设我们要在一个音频缓冲区中播放背景音乐,可以按如下设置:

GlobalSecondaryBuffer->Play(0, 0, DSBPLAY_LOOPING);
  • 解释
    • 0 表示 dwReserved1dwPriority 不使用特定设置。
    • DSBPLAY_LOOPING 让音频循环播放。

修改bug

在这里插入图片描述

// game.cpp : Defines the entry point for the application.
//#include <cstdint>
#include <dsound.h>
#include <minwindef.h>
#include <processenv.h>
#include <stdint.h>
#include <windows.h>
#include <winerror.h>
#include <xinput.h>#define internal static        // 用于定义内翻译单元内部函数
#define local_persist static   // 局部静态变量
#define global_variable static // 全局变量typedef uint8_t uint8;
typedef uint16_t uint16;
typedef uint32_t uint32;
typedef uint64_t uint64;typedef int8_t int8;
typedef int16_t int16;
typedef int32_t int32;
typedef int64_t int64;
typedef int32 bool32;struct win32_offscreen_buffer {BITMAPINFO Info;void *Memory;// 后备缓冲区的宽度和高度int Width;int Height;int Pitch;int BytesPerPixel;
};
// 添加这个去掉重复的冗余代码
struct win32_window_dimension {int Width;int Height;
};// TODO: 全局变量
// 用于控制程序运行的全局布尔变量,通常用于循环条件
global_variable bool GloblaRunning;
// 用于存储屏幕缓冲区的全局变量
global_variable win32_offscreen_buffer GlobalBackbuffer;
global_variable LPDIRECTSOUNDBUFFER GlobalSecondaryBuffer;/*** @param dwUserIndex // 与设备关联的玩家索引* @param pState // 接收当前状态的结构体*/
#define X_INPUT_GET_STATE(name)                                                \DWORD WINAPI name(DWORD dwUserIndex,                                         \XINPUT_STATE *pState) // 定义一个宏,将指定名称设置为// XInputGetState 函数的类型定义/*** @param dwUserIndex // 与设备关联的玩家索引* @param pVibration  // 要发送到控制器的震动信息*/
#define X_INPUT_SET_STATE(name)                                                \DWORD WINAPI name(                                                           \DWORD dwUserIndex,                                                       \XINPUT_VIBRATION *pVibration) // 定义一个宏,将指定名称设置为// XInputSetState 函数的类型定义typedef X_INPUT_GET_STATE(x_input_get_state); // 定义了 x_input_get_state 类型,为 `XInputGetState`// 函数的类型
typedef X_INPUT_SET_STATE(x_input_set_state); // 定义了 x_input_set_state 类型,为 `XInputSetState`// 函数的类型// 定义一个 XInputGetState 的打桩函数,返回值为
// ERROR_DEVICE_NOT_CONNECTED,表示设备未连接
X_INPUT_GET_STATE(XInputGetStateStub) { //return (ERROR_DEVICE_NOT_CONNECTED);
}// 定义一个 XInputSetState 的打桩函数,返回值为
// ERROR_DEVICE_NOT_CONNECTED,表示设备未连接
X_INPUT_SET_STATE(XInputSetStateStub) { //return (ERROR_DEVICE_NOT_CONNECTED);
}// 设置全局变量 XInputGetState_ 和 XInputSetState_ 的初始值为打桩函数
global_variable x_input_get_state *XInputGetState_ = XInputGetStateStub;
global_variable x_input_set_state *XInputSetState_ = XInputSetStateStub;// 定义宏将 XInputGetState 和 XInputSetState 重新指向 XInputGetState_ 和
// XInputSetState_
#define XInputGetState XInputGetState_
#define XInputSetState XInputSetState_// 加载 XInput DLL 并获取函数地址
internal void Win32LoadXInput(void) { //HMODULE XInputLibrary = LoadLibrary("xinput1_4.dll");if (!XInputLibrary) {// 如果无法加载 xinput1_4.dll,则回退到 xinput1_3.dllXInputLibrary = LoadLibrary("xinput1_3.dll");} else {// TODO:Diagnostic}if (XInputLibrary) { // 检查库是否加载成功XInputGetState = (x_input_get_state *)GetProcAddress(XInputLibrary, "XInputGetState"); // 获取 XInputGetState 函数地址if (!XInputGetState) { // 如果获取失败,使用打桩函数XInputGetState = XInputGetStateStub;}XInputSetState = (x_input_set_state *)GetProcAddress(XInputLibrary, "XInputSetState"); // 获取 XInputSetState 函数地址if (!XInputSetState) { // 如果获取失败,使用打桩函数XInputSetState = XInputSetStateStub;}} else {// TODO:Diagnostic}
}#define DIRECT_SOUND_CREATE(name)                                              \HRESULT WINAPI name(LPCGUID pcGuidDevice, LPDIRECTSOUND *ppDS,               \LPUNKNOWN pUnkOuter);
// 定义一个宏,用于声明 DirectSound 创建函数的原型typedef DIRECT_SOUND_CREATE(direct_sound_create);
// 定义一个类型别名 direct_sound_create,代表
// DirectSound 创建函数internal void Win32InitDSound(HWND window, int32 SamplesPerSecond,int32 BufferSize) {// 注意: 加载 dsound.dll 动态链接库HMODULE DSoundLibrary = LoadLibraryA("dsound.dll");if (DSoundLibrary) {// 注意: 获取 DirectSound 创建函数的地址// 通过 GetProcAddress 函数查找 "DirectSoundCreate" 函数在 dsound.dll// 中的地址,并将其转换为 direct_sound_create 类型的函数指针direct_sound_create *DirectSoundCreate =(direct_sound_create *)GetProcAddress(DSoundLibrary,"DirectSoundCreate");// 定义一个指向 IDirectSound 接口的指针,并初始化为 NULLIDirectSound *DirectSound = NULL;if (DirectSoundCreate && SUCCEEDED(DirectSoundCreate(0,// 传入 0 作为设备 GUID,表示使用默认音频设备&DirectSound,// 将创建的 DirectSound 对象的指针存储到// DirectSound 变量中0// 传入 0 作为外部未知接口指针,通常为 NULL))) //{// clang-format offWAVEFORMATEX WaveFormat = {};WaveFormat.wFormatTag = WAVE_FORMAT_PCM; // 设置格式标签为 WAVE_FORMAT_PCM,表示使用未压缩的 PCM 格式WaveFormat.nChannels = 2;          // 设置声道数为 2,表示立体声(两个声道:左声道和右声道)WaveFormat.nSamplesPerSec = SamplesPerSecond; // 采样率 表示每秒钟的样本数,常见值为 44100 或 48000 等WaveFormat.wBitsPerSample = 16;    // 16位音频 设置每个样本的位深为 16 位WaveFormat.nBlockAlign = (WaveFormat.nChannels * WaveFormat.wBitsPerSample) / 8;// 计算数据块对齐大小,公式为:nBlockAlign = nChannels * (wBitsPerSample / 8)// 这里除以 8 是因为每个样本的大小是按字节来计算的,nChannels 是声道数// wBitsPerSample 是每个样本的位数,除以 8 转换为字节WaveFormat.nAvgBytesPerSec =  WaveFormat.nSamplesPerSec * WaveFormat.nBlockAlign;// 计算每秒的平均字节数,公式为:nAvgBytesPerSec = nSamplesPerSec * nBlockAlign// 这表示每秒音频数据流的字节数,它帮助估算缓冲区大小// clang-format on// 函数用于设置 DirectSound 的协作等级if (SUCCEEDED(DirectSound->SetCooperativeLevel(window, DSSCL_PRIORITY))) {// 注意: 创建一个主缓冲区// 使用 DirectSoundCreate 函数创建一个 DirectSound// 对象,并初始化主缓冲区 具体的实现步骤可以根据实际需求补充DSBUFFERDESC BufferDescription = {};BufferDescription.dwSize = sizeof(BufferDescription); // 结构的大小// dwFlags:设置为// DSBCAPS_PRIMARYBUFFER,指定我们要创建的是主缓冲区,而不是次缓冲区。BufferDescription.dwFlags = DSBCAPS_PRIMARYBUFFER;LPDIRECTSOUNDBUFFER PrimaryBuffer = NULL;if (SUCCEEDED(DirectSound->CreateSoundBuffer(&BufferDescription, // 指向缓冲区描述结构体的指针&PrimaryBuffer,     // 指向创建的缓冲区对象的指针NULL                // 外部未知接口,通常传入 NULL))) {if (SUCCEEDED(PrimaryBuffer->SetFormat(&WaveFormat))) {// NOTE:we have finally set the formatOutputDebugString("SetFormat 成功");} else {// NOTE:OutputDebugString("SetFormat 失败");}} else {}} else {}// 注意: 创建第二个缓冲区// 创建次缓冲区来承载音频数据,并在播放时使用// 对象,并初始化主缓冲区 具体的实现步骤可以根据实际需求补充DSBUFFERDESC BufferDescription = {};BufferDescription.dwSize = sizeof(BufferDescription); // 结构的大小// dwFlags:设置为// DSBCAPS_GETCURRENTPOSITION2 |// DSBCAPS_GLOBALFOCUS两个标志会使次缓冲区在播放时更加精确,同时在应用失去焦点时保持音频输出BufferDescription.dwFlags =DSBCAPS_GETCURRENTPOSITION2 | DSBCAPS_GLOBALFOCUS;BufferDescription.dwBufferBytes = BufferSize; // 缓冲区大小BufferDescription.lpwfxFormat = &WaveFormat; // 指向音频格式的指针if (SUCCEEDED(DirectSound->CreateSoundBuffer(&BufferDescription,     // 指向缓冲区描述结构体的指针&GlobalSecondaryBuffer, // 指向创建的缓冲区对象的指针NULL                    // 外部未知接口,通常传入 NULL))) {OutputDebugString("SetFormat 成功");} else {OutputDebugString("SetFormat 失败");}// 注意: 开始播放!// 调用相应的 DirectSound API 开始播放音频} else {}} else {}
}internal win32_window_dimension Win32GetWindowDimension(HWND Window) {win32_window_dimension Result;RECT ClientRect;GetClientRect(Window, &ClientRect);// 计算绘制区域的宽度和高度Result.Height = ClientRect.bottom - ClientRect.top;Result.Width = ClientRect.right - ClientRect.left;return Result;
}// 渲染一个奇异的渐变图案
internal void RenderWeirdGradient(win32_offscreen_buffer Buffer, int BlueOffset,int GreenOffset) {// TODO:让我们看看优化器是怎么做的uint8 *Row = (uint8 *)Buffer.Memory;      // 指向位图数据的起始位置for (int Y = 0; Y < Buffer.Height; ++Y) { // 遍历每一行uint32 *Pixel = (uint32 *)Row;          // 指向每一行的起始像素for (int X = 0; X < Buffer.Width; ++X) { // 遍历每一列uint8 Blue = (X + BlueOffset);         // 计算蓝色分量uint8 Green = (Y + GreenOffset);       // 计算绿色分量*Pixel++ = ((Green << 8) | Blue);      // 设置当前像素的颜色}Row += Buffer.Pitch; // 移动到下一行}
}// 这个函数用于重新调整 DIB(设备独立位图)大小
internal void Win32ResizeDIBSection(win32_offscreen_buffer *Buffer, int width,int height) {// device independent bitmap(设备独立位图)// TODO: 进一步优化代码的健壮性// 可能的改进:先不释放,先尝试其他方法,再如果失败再释放。if (Buffer->Memory) {VirtualFree(Buffer->Memory, // 指定要释放的内存块起始地址0, // 要释放的大小(字节),对部分释放有效,整体释放则设为 0MEM_RELEASE); // MEM_RELEASE:释放整个内存块,将内存和地址空间都归还给操作系统}// 赋值后备缓冲的宽度和高度Buffer->Width = width;Buffer->Height = height;Buffer->BytesPerPixel = 4;// 设置位图信息头(BITMAPINFOHEADER)Buffer->Info.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); // 位图头大小Buffer->Info.bmiHeader.biWidth = Buffer->Width; // 设置位图的宽度Buffer->Info.bmiHeader.biHeight =-Buffer->Height; // 设置位图的高度(负号表示自上而下的方向)Buffer->Info.bmiHeader.biPlanes = 1; // 设置颜色平面数,通常为 1Buffer->Info.bmiHeader.biBitCount =32; // 每像素的位数,这里为 32 位(即 RGBA)Buffer->Info.bmiHeader.biCompression =BI_RGB; // 无压缩,直接使用 RGB 颜色模式// 创建 DIBSection(设备独立位图)并返回句柄// TODO:我们可以自己分配?int BitmapMemorySize =(Buffer->Width * Buffer->Height) * Buffer->BytesPerPixel;Buffer->Memory = VirtualAlloc(0, // lpAddress:指定内存块的起始地址。// 通常设为 NULL,由系统自动选择一个合适的地址。BitmapMemorySize, // 要分配的内存大小,单位是字节。MEM_COMMIT, // 分配物理内存并映射到虚拟地址。已提交的内存可以被进程实际访问和操作。PAGE_READWRITE // 内存可读写);Buffer->Pitch = width * Buffer->BytesPerPixel; // 每一行的字节数// TODO:可能会把它清除成黑色
}// 这个函数用于将 DIBSection 绘制到窗口设备上下文
internal void Win32DisplayBufferInWindow(HDC DeviceContext, int WindowWidth,int WindowHeight,win32_offscreen_buffer Buffer, int X,int Y, int Width, int Height) {// 使用 StretchDIBits 将 DIBSection 绘制到设备上下文中StretchDIBits(DeviceContext, // 目标设备上下文(窗口或屏幕的设备上下文)/*X, Y, Width, Height, // 目标区域的 x, y 坐标及宽高X, Y, Width, Height,*/0, 0, WindowWidth, WindowHeight,   //0, 0, Buffer.Width, Buffer.Height, //// 源区域的 x, y 坐标及宽高(此处源区域与目标区域相同)Buffer.Memory,  // 位图内存指针,指向 DIBSection 数据&Buffer.Info,   // 位图信息,包含位图的大小、颜色等信息DIB_RGB_COLORS, // 颜色类型,使用 RGB 颜色SRCCOPY); // 使用 SRCCOPY 操作符进行拷贝(即源图像直接拷贝到目标区域)
}LRESULT CALLBACK
Win32MainWindowCallback(HWND hwnd, // 窗口句柄,表示消息来源的窗口UINT Message, // 消息标识符,表示当前接收到的消息类型WPARAM wParam, // 与消息相关的附加信息,取决于消息类型LPARAM LParam) { // 与消息相关的附加信息,取决于消息类型LRESULT Result = 0; // 定义一个变量来存储消息处理的结果switch (Message) { // 根据消息类型进行不同的处理case WM_CREATE: {OutputDebugStringA("WM_CREATE\n");};case WM_SIZE: { // 窗口大小发生变化时的消息} break;case WM_DESTROY: { // 窗口销毁时的消息// TODO: 处理错误,用重建窗口GloblaRunning = false;} break;case WM_SYSKEYDOWN: // 系统按键按下消息,例如 Alt 键组合。case WM_SYSKEYUP:   // 系统按键释放消息。case WM_KEYDOWN:    // 普通按键按下消息。case WM_KEYUP: {    // 普通按键释放消息。uint64 VKCode = wParam; // `wParam` 包含按键的虚拟键码(Virtual-Key Code)bool WasDown = ((LParam & (1 << 30)) != 0);bool IsDown = ((LParam & (1 << 30)) == 0);bool32 AltKeyWasDown = (LParam & (1 << 29)); // 检查Alt键是否被按下// bool AltKeyWasDown = ((LParam & (1 << 29)) != 0); //// 检查Alt键是否被按下if (IsDown != WasDown) {if (VKCode == 'W') { // 检查是否按下了 'W' 键} else if (VKCode == 'A') {} else if (VKCode == 'S') {} else if (VKCode == 'D') {} else if (VKCode == 'Q') {} else if (VKCode == 'E') {} else if (VKCode == VK_UP) {} else if (VKCode == VK_DOWN) {} else if (VKCode == VK_LEFT) {} else if (VKCode == VK_RIGHT) {} else if (VKCode == VK_ESCAPE) {OutputDebugStringA("ESCAPE: ");if (IsDown) {OutputDebugString(" IsDown ");}if (WasDown) {OutputDebugString(" WasDown ");}} else if (VKCode == VK_SPACE) {}}if ((VKCode == VK_F4) && AltKeyWasDown) {GloblaRunning = false;}} break;case WM_CLOSE: { // 窗口关闭时的消息// TODO: 像用户发送消息进行处理GloblaRunning = false;} break;case WM_ACTIVATEAPP: { // 应用程序激活或失去焦点时的消息OutputDebugStringA("WM_ACTIVATEAPP\n"); // 输出调试信息,表示应用程序激活或失去焦点} break;case WM_PAINT: { // 处理 WM_PAINT 消息,通常在窗口需要重新绘制时触发PAINTSTRUCT Paint; // 定义一个 PAINTSTRUCT 结构体,保存绘制的信息// 调用 BeginPaint 开始绘制,并获取设备上下文 (HDC),同时填充 Paint 结构体HDC DeviceContext = BeginPaint(hwnd, &Paint);// 获取当前绘制区域的左上角坐标int X = Paint.rcPaint.left;int Y = Paint.rcPaint.top;// 计算绘制区域的宽度和高度int Height = Paint.rcPaint.bottom - Paint.rcPaint.top;int Width = Paint.rcPaint.right - Paint.rcPaint.left;win32_window_dimension Dimension = Win32GetWindowDimension(hwnd);Win32DisplayBufferInWindow(DeviceContext, Dimension.Width, Dimension.Height,GlobalBackbuffer, X, Y, Width, Height);// 调用 EndPaint 结束绘制,并释放设备上下文EndPaint(hwnd, &Paint);} break;default: { // 对于不处理的消息,调用默认的窗口过程Result = DefWindowProc(hwnd, Message, wParam, LParam);// 调用默认窗口过程处理消息} break;}return Result; // 返回处理结果
}int CALLBACK WinMain(HINSTANCE hInst, HINSTANCE hInstPrev, //PSTR cmdline, int cmdshow) {Win32LoadXInput();WNDCLASS WindowClass = {};// 使用大括号初始化,所有成员都被初始化为零(0)或 nullptrWin32ResizeDIBSection(&GlobalBackbuffer, 1280, 720);// WindowClass.style:表示窗口类的样式。通常设置为一些 Windows// 窗口样式标志(例如 CS_HREDRAW, CS_VREDRAW)。WindowClass.style = CS_OWNDC | CS_HREDRAW | CS_VREDRAW;// CS_HREDRAW 当窗口的宽度发生变化时,窗口会被重绘。// CS_VREDRAW 当窗口的高度发生变化时,窗口会被重绘//  WindowClass.lpfnWndProc:指向窗口过程函数的指针,窗口过程用于处理与窗口相关的消息。WindowClass.lpfnWndProc = Win32MainWindowCallback;// WindowClass.hInstance:指定当前应用程序的实例句柄,Windows// 应用程序必须有一个实例句柄。WindowClass.hInstance = hInst;// WindowClass.lpszClassName:指定窗口类的名称,通常用于创建窗口时注册该类。WindowClass.lpszClassName = "gameWindowClass"; // 类名if (RegisterClass(&WindowClass)) {             // 如果窗口类注册成功HWND Window = CreateWindowEx(0,                         // 创建窗口,使用扩展窗口风格WindowClass.lpszClassName, // 窗口类的名称,指向已注册的窗口类"game",                    // 窗口标题(窗口的名称)WS_OVERLAPPEDWINDOW |WS_VISIBLE, // 窗口样式:重叠窗口(带有菜单、边框等)并且可见CW_USEDEFAULT, // 窗口的初始位置:使用默认位置(X坐标)CW_USEDEFAULT, // 窗口的初始位置:使用默认位置(Y坐标)CW_USEDEFAULT, // 窗口的初始宽度:使用默认宽度CW_USEDEFAULT, // 窗口的初始高度:使用默认高度0,             // 父窗口句柄(此处无父窗口,传0)0,             // 菜单句柄(此处没有菜单,传0)hInst,         // 当前应用程序的实例句柄0 // 额外的创建参数(此处没有传递额外参数));// 如果窗口创建成功,Window 将保存窗口的句柄if (Window) { // 检查窗口句柄是否有效,若有效则进入消息循环// 图像测试int xOffset = 0;int yOffset = 0;// 音频测试uint32 RunningSampleIndex = 0; // 样本索引int SquareWaveCounter = 0;     // 方波数int16 ToneVolume = 3000;       // 音量int SamplesPerSecond = 48000;  // 采样率:每秒采样48000次int ToneHz = 256;              // 方波频率:256 Hzint SquareWavePeriod = SamplesPerSecond / ToneHz; // 方波周期(样本数)int HalfSquareWavePeriod = SquareWavePeriod / 2; // 方波半周期(样本数)int BytesPerSample = sizeof(int16) * 2;          // 一个样本的大小int SecondaryBufferSize = SamplesPerSecond * BytesPerSample; // 缓冲区大小bool32 SoundIsPlaying = false;Win32InitDSound(Window, SamplesPerSecond, SecondaryBufferSize);GloblaRunning = true;while (GloblaRunning) { // 启动一个无限循环,等待和处理消息MSG Message;          // 声明一个 MSG 结构体,用于接收消息while (PeekMessage(&Message,// 指向一个 `MSG` 结构的指针。`PeekMessage`// 将在 `lpMsg` 中填入符合条件的消息内容。0,// `hWnd` 为`NULL`,则检查当前线程中所有窗口的消息;// 如果设置为特定的窗口句柄,则只检查该窗口的消息。0, //0, // 用于设定消息类型的范围PM_REMOVE // 将消息从消息队列中移除,类似于 `GetMessage` 的行为。)) {if (Message.message == WM_QUIT) {GloblaRunning = false;}TranslateMessage(&Message); // 翻译消息,如果是键盘消息需要翻译DispatchMessage(&Message); // 分派消息,调用窗口过程处理消息}// TODO: 我们应该频繁的轮询吗for (DWORD ControllerIndex = 0; ControllerIndex < XUSER_INDEX_ANY;ControllerIndex++) {// 定义一个 XINPUT_STATE 结构体,用来存储控制器的状态XINPUT_STATE ControllerState;// 调用 XInputGetState 获取控制器的状态if (XInputGetState(ControllerIndex, &ControllerState) ==ERROR_SUCCESS) {// 如果获取控制器状态成功,提取 Gamepad 的数据// NOTE:// 获取方向键的按键状态XINPUT_GAMEPAD *Pad = &ControllerState.Gamepad;bool Up = (Pad->wButtons & XINPUT_GAMEPAD_DPAD_UP);bool Down = (Pad->wButtons & XINPUT_GAMEPAD_DPAD_DOWN);bool Left = (Pad->wButtons & XINPUT_GAMEPAD_DPAD_LEFT);bool Right = (Pad->wButtons & XINPUT_GAMEPAD_DPAD_RIGHT);// 获取肩部按钮的按键状态bool LeftShoulder = (Pad->wButtons & XINPUT_GAMEPAD_LEFT_SHOULDER);bool RightShoulder =(Pad->wButtons & XINPUT_GAMEPAD_RIGHT_SHOULDER);// 获取功能按钮的按键状态bool Start = (Pad->wButtons & XINPUT_GAMEPAD_START);bool Back = (Pad->wButtons & XINPUT_GAMEPAD_BACK);bool AButton = (Pad->wButtons & XINPUT_GAMEPAD_A);bool BButton = (Pad->wButtons & XINPUT_GAMEPAD_B);bool XButton = (Pad->wButtons & XINPUT_GAMEPAD_X);bool YButton = (Pad->wButtons & XINPUT_GAMEPAD_Y);// std::cout << "AButton " << AButton << " BButton " << BButton//           << " XButton " << XButton << " YButton " << YButton//           << std::endl;// 获取摇杆的 X 和 Y 坐标值(-32768 到 32767)int16 StickX = Pad->sThumbLX;int16 StickY = Pad->sThumbLY;if (AButton) {yOffset += 2;}} else {}}DWORD PlayCursor = 0;  // 播放游标,指示当前播放位置DWORD WriteCursor = 0; // 写入游标,指示当前写入位置// 获取音频缓冲区的当前播放和写入位置if (SUCCEEDED(GlobalSecondaryBuffer->GetCurrentPosition(&PlayCursor, &WriteCursor))) {// 计算需要锁定的字节位置,基于当前样本索引和每样本字节数DWORD BytesToLock =RunningSampleIndex * BytesPerSample % SecondaryBufferSize;DWORD BytesToWrite = 0; // 需要写入的字节数// 判断 BytesToLock 与 PlayCursor 的位置关系以确定写入量if (BytesToLock == PlayCursor) {// 如果锁定位置正好等于播放位置,写入整个缓冲区if (!SoundIsPlaying) {BytesToWrite = SecondaryBufferSize;}} else if (BytesToLock > PlayCursor) {// 如果锁定位置在播放位置之后,写入从锁定位置到缓冲区末尾,再加上开头到播放位置的字节数BytesToWrite = (SecondaryBufferSize - BytesToLock) + PlayCursor;} else {// 如果锁定位置在播放位置之前,写入从锁定位置到播放位置之间的字节数BytesToWrite = PlayCursor - BytesToLock;}VOID *Region1; // 第一段区域指针,用于存放锁定后的首部分缓冲区地址DWORD Region1Size; // 第一段区域的大小(字节数)VOID *Region2; // 第二段区域指针,用于存放锁定后的剩余部分缓冲区地址DWORD Region2Size; // 第二段区域的大小(字节数)if (SUCCEEDED(GlobalSecondaryBuffer->Lock(BytesToLock, // 缓冲区偏移量,指定开始锁定的字节位置BytesToWrite, // 锁定的字节数,指定要锁定的区域大小&Region1, // 输出,返回锁定区域的内存指针(第一个区域)&Region1Size, // 输出,返回第一个锁定区域的实际字节数&Region2, // 输出,返回第二个锁定区域的内存指针(可选,双缓冲或环形缓冲时使用)&Region2Size, // 输出,返回第二个锁定区域的实际字节数0 // 标志,控制锁定行为(如从光标位置锁定等)))) {// int16 int16 int16// 左 右 左 右 左 右 左 右 左 右DWORD Region1SampleCount =Region1Size / BytesPerSample; // 计算第一段区域中的样本数量int16 *SampleOut = (int16 *)Region1; // 将第一段区域指针转换为 16// 位整型指针,准备写入样本数据if (Region2Size > 48000 && BytesToLock != PlayCursor) {OutputDebugStringA("test");}// 循环写入样本到第一段区域for (DWORD SampleIndex = 0; SampleIndex < Region1SampleCount;++SampleIndex) {// 计算每个样本的值,使用方波产生音频数据// RunningSampleIndex++ / HalfSquareWavePeriod) % 2// 用于生成方波,隔半个周期翻转振幅int16 SampleValue =((RunningSampleIndex++ / HalfSquareWavePeriod) % 2)? ToneVolume   // 如果为偶数周期,输出正振幅: -ToneVolume; // 如果为奇数周期,输出负振幅*SampleOut++ = SampleValue; // 左声道*SampleOut++ = SampleValue; // 右声道}DWORD Region2SampleCount =Region2Size / BytesPerSample; // 计算第二段区域中的样本数量SampleOut = (int16 *)Region2; // 将第二段区域指针转换为 16// 位整型指针,准备写入样本数据// 循环写入样本到第二段区域for (DWORD SampleIndex = 0; SampleIndex < Region2SampleCount;++SampleIndex) {// 使用相同逻辑生成方波样本数据int16 SampleValue =((RunningSampleIndex++ / HalfSquareWavePeriod) % 2)? ToneVolume        // 偶数周期,输出正振幅: -ToneVolume;      // 奇数周期,输出负振幅*SampleOut++ = SampleValue; // 左声道*SampleOut++ = SampleValue; // 右声道}// 解锁音频缓冲区,将数据提交给音频设备GlobalSecondaryBuffer->Unlock(Region1, Region1Size, Region2,Region2Size);}}if (!SoundIsPlaying) {GlobalSecondaryBuffer->Play(0, 0, DSBPLAY_LOOPING);SoundIsPlaying = true;}RenderWeirdGradient(GlobalBackbuffer, xOffset, yOffset);// 这个地方需要渲染一下不然是黑屏a{HDC DeviceContext = GetDC(Window);win32_window_dimension Dimension = Win32GetWindowDimension(Window);RECT WindowRect;GetClientRect(Window, &WindowRect);int WindowWidth = WindowRect.right - WindowRect.left;int WindowHeigh = WindowRect.bottom - WindowRect.top;Win32DisplayBufferInWindow(DeviceContext, Dimension.Width,Dimension.Height, GlobalBackbuffer, 0, 0,WindowWidth, WindowHeigh);ReleaseDC(Window, DeviceContext);}++xOffset;}} else { // 如果窗口创建失败// 这里可以处理窗口创建失败的逻辑// 比如输出错误信息,或退出程序等// TODO:}} else { // 如果窗口类注册失败// 这里可以处理注册失败的逻辑// 比如输出错误信息,或退出程序等// TODO:}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/472882.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯-洛谷刷题-day3(C++)

目录 1.忽略回车的字符串输入 i.getline() ii.逐个字符的识别再输入 2.获取绝对值abs() 3.做题时的误区 4.多个变量的某一个到达判断条件 i.max() 5.[NOIP2016 提高组] 玩具谜题 i.代码 6.逻辑上的圆圈 i.有限个数n的数组 7.数组的定义 i.动态数组 1.忽略回车的字符串输…

不用来回切换,一个界面管理多个微信

你是不是也有多个微信号需要管理&#xff1f; 是不是也觉得频繁切换账号很麻烦&#xff1f; 是不是也想提升多账号管理的效率&#xff1f; 在工作中&#xff0c;好的辅助工具&#xff0c;能让我们的效率加倍增长&#xff01; 今天&#xff0c; 就给大家分享一个多微管理工具…

Word_小问题解决_1

1.第二页是空白的&#xff0c;但是删不掉 将鼠标弄到第二页最开始的地方打开段落设置行距为固定值0.7磅 2.表格中有文字进入了表格中怎么办 打开段落&#xff0c;将缩进改为0即可

LLM - 计算 多模态大语言模型 的参数量(Qwen2-VL、Llama-3.1) 教程

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/143749468 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 影响 (…

GEE下载ERA5-Land气象数据(1950-至今,降水、温度)

GEE下载ERA5-Land气象数据&#xff08;1950-至今&#xff0c;降水、温度&#xff09; ERA5-Land是一个高分辨率的陆地再分析数据集,相比ERA5数据集具有更高的空间分辨率。它是通过重新运行ECMWF ERA5气候再分析系统的陆地分量生成的。 空间分辨率特点&#xff1a; 网格间距…

动态规划-完全背包问题——518.零钱兑换II

1.题目解析 建议先看 322.零钱兑换可以 更加轻松的理解本题 题目来源 518.零钱兑换——力扣 测试用例 2.算法原理 1.状态表示 本题要求返回所有情况&#xff0c;所以dp值就代表所有的方法数&#xff0c;即 dp[i][j]&#xff1a;在[1,i]个硬币中选择不同面值的硬币&#xff0c…

推荐15个2024最新精选wordpress模板

以下是推荐的15个2024年最新精选WordPress模板&#xff0c;轻量级且SEO优化良好&#xff0c;适合需要高性能网站的用户。中文wordpress模板适合搭建企业官网使用。英文wordpress模板&#xff0c;适合B2C网站搭建&#xff0c;功能强大且兼容性好&#xff0c;是许多专业外贸网站的…

使用Java绘制图片边框,解决微信小程序map组件中marker与label层级关系问题,label增加外边框后显示不能置与marker上面

今天上线的时候发现系统不同显示好像不一样&#xff0c;苹果手机打开的时候是正常的&#xff0c;但是一旦用安卓手机打开就会出现label不置顶的情况。尝试了很多种办法&#xff0c;也在官方查看了map相关的文档&#xff0c;发现并没有给label设置zIndex的属性&#xff0c;只看到…

微信小程序 https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中

授权登录后&#xff0c;拿到用户头像进行加载&#xff0c;但报错提示&#xff1a; https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中 解决方法一&#xff08;未完全解决&#xff0c;临时处理&#xff09;&#xff1a;在微信开发者工具将不校验...勾上就可以访问…

【HAProxy09】企业级反向代理HAProxy高级功能之压缩功能与后端服务器健康性监测

HAProxy 高级功能 介绍 HAProxy 高级配置及实用案例 压缩功能 对响应给客户端的报文进行压缩&#xff0c;以节省网络带宽&#xff0c;但是会占用部分CPU性能 建议在后端服务器开启压缩功能&#xff0c;而非在HAProxy上开启压缩 注意&#xff1a;默认Ubuntu的包安装nginx开…

zabbix7.0实操指南:基于麒麟V10操作系统部署zabbix7.0

在当今信息技术飞速发展的时代&#xff0c;企业对于IT基础设施的监控管理需求日益增长。为了确保系统的稳定性和高效性&#xff0c;我们需要一个强大的监控工具来实时监控各种硬件和软件资源的状态。Zabbix作为一个开源的企业级监控解决方案&#xff0c;因其强大的功能和灵活的…

Android笔记(三十七):封装一个RecyclerView Item曝光工具——用于埋点上报

背景 项目中首页列表页需要统计每个item的曝光情况&#xff0c;给产品运营提供数据报表分析用户行为&#xff0c;于是封装了一个通用的列表Item曝光工具&#xff0c;方便曝光埋点上报 源码分析 核心就是监听RecyclerView的滚动&#xff0c;在滚动状态为SCROLL_STATE_IDLE的时…

微服务瞎写

1.微服务解决的问题 1、如何发现新节点以及检查各节点的运行状态&#xff1f; 2、如何发现服务及负载均衡如何实现&#xff1f; 3、服务间如何进行消息通信&#xff1f; 4、如何对使用者暴露服务API&#xff1f; 5、如何集中管理各节点配置文件&#xff1f; 6、如何收集各…

群控系统服务端开发模式-应用开发-前端图片格式功能开发

一、添加视图 在根目录下src文件夹下views文件夹下param文件夹下grade文件夹下&#xff0c;新建index.vue&#xff0c;代码如下 <template><div class"app-container"><div class"filter-container" style"float:left;"><…

创建vue+electron项目流程

一个vue3和electron最基本的环境搭建步骤如下&#xff1a;// 安装 vite vue3 vite-plugin-vue-setup-extend less normalize.css mitt pinia vue-router npm create vuelatest npm i vite-plugin-vue-setup-extend -D npm i less -D npm i normalize.css -S &#xff0…

Android Studio 控制台输出的中文显示乱码

1. Android Studio 控制台输出的中文显示乱码 1.1. 问题 安卓在调试阶段&#xff0c;需要查看app运行时的输出信息、出错提示信息。乱码&#xff0c;会极大的阻碍开发者前进的信心&#xff0c;不能及时的根据提示信息定位问题&#xff0c;因此我们需要查看没有乱码的打印信息。…

常见的测试方法

软件测试是软件⽣命周期中的⼀个重要环节&#xff0c;具有较⾼的复杂性&#xff0c;对于软件测试&#xff0c;可以从不同的⻆度加以分类&#xff0c;使开发者在软件开发过程中的不同层次、不同阶段对测试⼯作进⾏更好的执⾏和管理测试的分类⽅法。 按照测试目标分类 界面测试…

Linux驱动开发第2步_“物理内存”和“虚拟内存”的映射

“新字符设备的GPIO驱动”和“设备树下的GPIO驱动”都要用到寄存器地址&#xff0c;使用“物理内存”和“虚拟内存”映射时&#xff0c;非常不方便&#xff0c;而pinctrl和gpio子系统的GPIO驱动&#xff0c;非常简化。因此&#xff0c;要重点学习pinctrl和gpio子系统下的GPIO驱…

【0x001C】HCI_Write_Page_Scan_Activity详解

目录 一、命令概述 二、命令格式和参数说明 2.1. HCI_Write_Page_Scan_Activity命令格式 2.2. Page_Scan_Interval 2.3. Page_Scan_Window 三、响应事件及参数说明 3.1. HCI_Command_Complete事件 3.2. Status 3.3. 示例 四、命令执行流程 4.1. 命令发起阶段(主机端…

【AI图像生成网站Golang】雪花算法

AI图像生成网站 目录 一、项目介绍 二、雪花算法 三、JWT认证与令牌桶算法 四、项目架构(等待更新) 五、图床上传与图像生成API搭建(等待更新) 六、项目测试与调试(等待更新) 雪花算法 雪花算法 (Snowflake) 是一种高效、可扩展的分布式唯一ID生成算法&#xff0c;最早…