拉格朗日乘子(Lagrange Multiplier)是数学分析中用于解决带有约束条件的优化问题的一种重要方法,特别是SVM

拉格朗日乘子(Lagrange Multiplier)是数学分析中用于解决带有约束条件的优化问题的一种重要方法,也称为拉格朗日乘数法。

例如之前博文写的2月7日 SVM&线性回归&逻辑回归在支持向量机(SVM)中,为了找到最佳的分割面(即决策边界),我们确实需要设置目标函数并引入拉格朗日乘子。

1 以下是对拉格朗日乘子的详细解释:

一、定义与基本概念

拉格朗日乘子法主要用于寻找在给定约束条件下,能够最大化或最小化一个函数的解。这里的约束条件通常以一个或多个等式的形式给出。

二、核心思想

拉格朗日乘子法的核心思想是将约束条件引入到目标函数中,通过构建一个新的函数(称为拉格朗日函数),从而将带有约束的优化问题转换为无约束的优化问题。这个新的函数包含了原目标函数和约束条件的线性组合,其中引入了一个新的变量,即拉格朗日乘子,它表示约束条件对目标函数的影响。

三、构建拉格朗日函数

对于目标函数f(x)和约束条件g(x)=0(其中x为变量向量),我们构造拉格朗日函数L(x,λ)=f(x)-λg(x)。其中,λ为拉格朗日乘子,g(x)为约束条件。

四、求解步骤

  1. 构造拉格朗日函数:根据目标函数和约束条件,构造出拉格朗日函数。
  2. 求偏导数:对拉格朗日函数分别关于变量向量x和拉格朗日乘子λ求偏导数,并设这些偏导数为0,形成一组方程。
  3. 解方程组:解这组方程,找到变量向量x和拉格朗日乘子λ的解。
  4. 验证解:将找到的解代入原目标函数和约束条件,验证是否满足极值条件和约束条件。

五、几何解释

从几何角度来看,拉格朗日乘子法的原理是在约束条件所表示的曲面上,目标函数的梯度和约束条件的梯度是共线的(平行的)。也就是说,目标函数在满足约束的点处,其梯度是约束条件的线性组合。如果我们可以找到拉格朗日乘子λ,使得目标函数和约束条件的梯度是平行的,那么这个点就是满足约束条件的最优点。

六、应用实例

拉格朗日乘子法在多个领域都有广泛应用,如经济学中的效用最大化问题、物理学中的力学问题、机器学习中的支持向量机(SVM)等。

七、注意事项

  1. 拉格朗日乘子法通常适用于等式约束的优化问题。对于不等式约束的优化问题,需要使用其他方法,如卡罗需-库恩-塔克(KKT)条件等。
  2. 在应用拉格朗日乘子法时,需要注意约束条件的可行性和目标函数的可微性。

综上所述,拉格朗日乘子法是解决带有约束条件的优化问题的一种有效方法,它通过构建拉格朗日函数将约束条件和目标函数结合起来,从而转换成无约束的优化问题。这种方法在数学优化、经济学、物理学和机器学习等领域都有广泛应用。

2 在支持向量机(SVM)中详细的步骤和解释:

2.1. 设置目标函数和约束条件

SVM 的目标是找到一个超平面(在二维空间中为直线,三维空间中为平面,以此类推),该超平面能够将数据点尽可能好地分开。为了量化“尽可能好地分开”,我们引入了间隔(margin)的概念。间隔是指超平面到其最近的数据点(即支持向量)的距离。SVM 的目标是最大化这个间隔。

目标函数(也称为优化问题)通常表示为:

max ⁡ w , b 2 ∥ w ∥ \max_{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|} maxw,bw2

其中, w \mathbf{w} w 是超平面的法向量, b b b 是截距。这个表达式是在最大化间隔(因为间隔与 1 ∥ w ∥ \frac{1}{\|\mathbf{w}\|} w1 成正比,所以我们最大化 2 ∥ w ∥ \frac{2}{\|\mathbf{w}\|} w2 或等价地最小化 1 2 ∥ w ∥ 2 \frac{1}{2}\|\mathbf{w}\|^2 21w2)。

约束条件是:

y i ( w ⋅ x i + b ) ≥ 1 , ∀ i y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \quad \forall i yi(wxi+b)1,i

其中, y i y_i yi 是数据点 x i \mathbf{x}_i xi 的标签(正类或负类), w ⋅ x i \mathbf{w} \cdot \mathbf{x}_i wxi 是向量 w \mathbf{w} w x i \mathbf{x}_i xi 的点积。

2. 引入拉格朗日乘子

为了求解这个带有约束条件的优化问题,我们引入拉格朗日乘子 α i ≥ 0 \alpha_i \geq 0 αi0,并构造拉格朗日函数:

L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i [ y i ( w ⋅ x i + b ) − 1 ] L(\mathbf{w}, b, \alpha) = \frac{1}{2}\|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] L(w,b,α)=21w2i=1Nαi[yi(wxi+b)1]

3. 求解拉格朗日函数

接下来,我们对拉格朗日函数关于 w \mathbf{w} w b b b 求偏导数,并设它们为0,以找到极值点。这会导致以下两个条件:

∂ L ∂ w = 0 ⇒ w = ∑ i = 1 N α i y i x i \frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i wL=0w=i=1Nαiyixi

∂ L ∂ b = 0 ⇒ ∑ i = 1 N α i y i = 0 \frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^N \alpha_i y_i = 0 bL=0i=1Nαiyi=0

将这两个条件代入拉格朗日函数,我们得到一个只包含 α i \alpha_i αi 的函数(称为拉格朗日对偶函数)。

4. 求解对偶问题

现在,我们需要最大化拉格朗日对偶函数,同时满足约束条件 α i ≥ 0 \alpha_i \geq 0 αi0 ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0。这通常通过求解一个二次规划(QP)问题来完成。

5. 推导出分割面

一旦我们找到了最优的 α i \alpha_i αi,我们就可以使用它们来找到最优的 w \mathbf{w} w b b b。然后,分割面(或决策边界)可以表示为:

w ⋅ x + b = 0 \mathbf{w} \cdot \mathbf{x} + b = 0 wx+b=0

其中, w \mathbf{w} w 是由支持向量的线性组合给出的,而 b b b 可以通过任何支持向量来计算(使用 y i ( w ⋅ x i + b ) = 1 y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1 yi(wxi+b)=1 的条件)。

总结

通过引入拉格朗日乘子并求解对偶问题,SVM 能够找到最大化间隔的分割面。这个分割面是由支持向量决定的,即那些位于间隔边界上的数据点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478126.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c++视频图像处理

打开视频或摄像头 打开指定视频 /*VideoCapture(const String &filename, apiPreference);filename:读取的视频或者图像序列的名称apiPreference:读取数据时设置的属性*/ VideoCapture video; //定义一个空的视频对象 video.open("H:/BaiduNetdiskDownlo…

前端三剑客(二):CSS

目录 1. CSS 基础 1.1 什么是 CSS 1.2 语法格式 1.3 引入方式 1.3.1 行内样式 1.3.2 内部样式 1.3.3 外部样式 1.4 CSS 编码规范 2. 选择器 2.1 标签选择器 2.2 id 选择器 2.3 class 选择器(类选择器) 2.4 复合选择器 2.5 通配符选择器 3. 常用 CSS 样式 3.1 c…

udp_socket

文章目录 UDP服务器封装系统调用socketbind系统调用bzero结构体清0sin_family端口号ip地址inet_addrrecvfromsendto 新指令 netstat -naup (-nlup)包装器 的两种类型重命名方式包装器使用统一可调用类型 关键字 typedef 类型重命名系统调用popen关于inet_ntoa UDP服务器封装 系…

【LLM训练系列02】如何找到一个大模型Lora的target_modules

方法1:观察attention中的线性层 import numpy as np import pandas as pd from peft import PeftModel import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig from typ…

解!决!vscode!Path Intellisense 失效!不起作用问题!!

第一步:找到path Intellisense插件 点击设置 第二步:打开settings.json文件: 第三步:配置settings.json文件内容: "path-intellisense.mappings": {"": "${workspaceRoot}/src",&qu…

力扣 LeetCode 110. 平衡二叉树(Day8:二叉树)

解题思路: 等于 -1 时,直接 return -1 class Solution {public boolean isBalanced(TreeNode root) {return getHeight(root) ! -1;}public int getHeight(TreeNode root) {if (root null) return 0;int leftDepth getHeight(root.left);if (leftDep…

ros2学习日记_241124_ros相关链接

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…

【TEST】Apache JMeter + Influxdb + Grafana

介绍 使用Jmeter发起测试,测试结果存入Influxdb,Grafana展示你的测试结果。 环境 windows 10docker desktopJDK17 安装 Apache JMeter 访问官网(Apache JMeter - Apache JMeter™)下载JMeter(目前最新版本5.6.3&a…

【隐私计算大模型】联邦深度学习之拆分学习Split learning原理及安全风险、应对措施以及在大模型联合训练中的应用案例

Tips:在两方场景下,设计的安全算法,如果存在信息不对等性,那么信息获得更多的一方可以有概率对另一方实施安全性攻击。 1. 拆分学习原理 本文介绍了一种适用于隐私计算场景的深度学习实现方案——拆分学习,又称分割…

汽车HiL测试:利用TS-GNSS模拟器掌握硬件性能的仿真艺术

一、汽车HiL测试的概念 硬件在环(Hardware-in-the-Loop,简称HiL)仿真测试,是模型基于设计(Model-Based Design,简称MBD)验证流程中的一个关键环节。该步骤至关重要,因为它整合了实际…

Vue——响应式数据,v-on,v-bind,v-if,v-for(内含项目实战)

目录 响应式数据 ref reactive 事件绑定指令 v-on v-on 鼠标监听事件 v-on 键盘监听事件 v-on 简写形式 属性动态化指令 v-bind iuput标签动态属性绑定 img标签动态属性绑定 b标签动态属性绑定 v-bind 简写形式 条件渲染指令 v-if 遍历指令 v-for 遍历对象的值 遍历…

Redis 常用数据类型插入性能对比:循环插入 vs. 批量插入

Redis 是一款高性能的键值数据库,其支持多种数据类型(String、Hash、List、Set、ZSet、Geo)。在开发中,经常会遇到需要插入大量数据的场景。如果逐条插入,性能会显得较低,而采用 Pipeline 批量插入 能大幅提…

开源动态表单form-create-designer 扩展个性化配置的最佳实践教程

在开源低代码表单设计器 form-create-designer 的右侧配置面板里,field 映射规则为开发者提供了强大的工具去自定义和增强组件及表单配置的显示方式。通过这些规则,你可以简单而高效地调整配置项的展示,提升用户体验。 源码地址: Github | G…

Java语言编程,通过阿里云mongo数据库监控实现数据库的连接池优化

一、背景 线上程序连接mongos超时,mongo监控显示连接数已使用100%。 java程序报错信息: org.mongodb.driver.connection: Closed connection [connectionId{localValue:1480}] to 192.168.10.16:3717 because there was a socket exception raised by…

深入浅出分布式缓存:原理与应用

文章目录 概述缓存分片算法1. Hash算法2. 一致性Hash算法3. 应用场景Redis集群方案1. Redis 集群方案原理2. Redis 集群方案的优势3. Java 代码示例:Redis 集群数据定位Redis 集群中的节点通信机制:Gossip 协议Redis 集群的节点通信:Gossip 协议Redis 集群的节点通信流程Red…

Loom篇之java虚拟线程那些事儿

我们在之前的文章中提到了java推出纤程的背景和原因。在近三十年来,Java 开发人员一直依赖线程作为并发服务器应用程序的构建块。每个方法中的每个语句都在线程内执行,并且由于 Java 是多线程的,因此多个执行线程会同时发生。线程是 Java 的并…

自然语言处理: RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜

本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor git地址:https://github.com/opendatalab/MinerU 写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!! 写在前面: 笔者更新不易,希望走过路…

如何选择服务器

如何选择服务器 选择服务器时应考虑以下几个关键因素: 性能需求。根据网站的预期流量和负载情况,选择合适的处理器、内存和存储容量。考虑网站是否需要处理大量动态内容或高分辨率媒体文件。 可扩展性。选择一个可以轻松扩展的服务器架构,以便…

Spring 框架七大模块(Java EE 学习笔记03)

​ ​核心容器模块(Core Container) 核心容器模块在Spring的功能体系中起着支撑性作用,是其他模块的基石。核心容器层主要由Beans模块、Core模块、Contex模块和SpEL模块组成。 (1)Beans模块。它提供了BeanFactory类&…

2025-2026财年美国CISA国际战略规划(下)

文章目录 前言四、加强综合网络防御(一)与合作伙伴共同实施网络防御,降低集体风险推动措施有效性衡量 (二)大规模推动标准和安全,以提高网络安全推动措施有效性衡量 (三)提高主要合作…