365天深度学习训练营-第P6周:VGG-16算法-Pytorch实现人脸识别

  • 🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

文为「365天深度学习训练营」内部文章
参考本文所写记录性文章,请在文章开头带上「👉声明」

🍺要求:

  1. 保存训练过程中的最佳模型权重 已【达成√】
  2. 调用官方的VGG-16网络框架【达成√】

🍻拔高(可选):

  1. 测试集准确率达到60%(难度有点大,但是这个过程可以学到不少)【达成√ 最终准确率为82%】
  2. 手动搭建VGG-16网络框架【达成√】

🏡 我的环境:

  • 语言环境:Python3.11.9
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • torch==2.3.1
      • torchvision==0.18.1
  • 数据集:🔗百度网盘、🔗和鲸(请不要对外公开数据集)

目录

一、 前期准备

1. 设置GPU

2. 导入数据

3. 划分数据集

二、调用官方的VGG-16模型

三、 训练模型

1. 编写训练函数

3. 编写测试函数

3. 设置动态学习率

4. 正式训练

四、 结果可视化

1. Loss与Accuracy图

2. 指定图片进行预测

3. 模型评估

五、优化代码

 

1. 数据预处理部分优化

优化点:

优化效果:

2. 模型结构优化

优化点:

优化效果:

3. 损失函数与优化器优化

优化点:

优化效果:

4. 训练与测试循环优化

优化点:

优化效果:

5. 效果

六、手动搭建VGG-16模型

七、个人学习总结

1. 深度学习项目的系统化流程

2. 迁移学习的威力

3. 模型优化的重要性

4. 自主搭建模型的能力提升

5. 项目调试与性能分析

6. 数据可视化的价值


一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2. 导入数据

import os,PIL,random,pathlibdata_dir = './48-data/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("./48-data/",transform=train_transforms)
total_data


total_data.class_to_idx

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

二、调用官方的VGG-16模型

VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

  1. 深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
  2. 卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
  3. 池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
  4. 全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

from torchvision.models import vgg16device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3. 设置动态学习率

# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lrlearn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
# 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

👉调用官方接口示例:

该代码块仅为代码讲解示例,不是整体程序的一部分

model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 2.5 documentation

4. 正式训练

model.train()model.eval()训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。

import copyloss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)# adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./48-data/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss

# 查看是否与我们记录的最高准确率一致
epoch_test_acc

五、优化代码

1. 数据预处理部分优化

优化点
  1. 数据增强不足:
    • 仅使用了 Resize,可能导致模型泛化能力较差。
    • 添加随机翻转、随机裁剪和颜色抖动等增强操作。
  2. 目标类别个数 len(classNames) 未正确设置,需检查类别数。
优化效果

增强数据多样性,减少模型过拟合,提高模型泛化性能。

from torchvision import transforms, datasets# 数据增强
train_transforms = transforms.Compose([transforms.RandomResizedCrop(224),  # 随机裁剪并调整到224x224transforms.RandomHorizontalFlip(),  # 随机水平翻转transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # 颜色抖动transforms.ToTensor(),              # 转为Tensortransforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化
])test_transforms = transforms.Compose([transforms.Resize(256),              # 调整大小transforms.CenterCrop(224),          # 中心裁剪到224x224transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])total_data = datasets.ImageFolder("./48-data/",transform=train_transforms)
total_dataprint(total_data.class_to_idx)train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset# 数据加载器
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=1)

2. 模型结构优化

优化点
  1. VGG16的全连接层过多,可能导致过拟合。
    • 减少全连接层的神经元数量,添加 Dropout 防止过拟合。
  2. 冻结的特征层过多,可能限制了特征学习能力。
    • 解冻后几层卷积层,让模型能够更好适配当前数据集。
优化效果

减轻过拟合风险,提升模型对特定数据集的适应性。

from torchvision.models import vgg16
import torch.nn as nndevice = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")# 加载预训练模型
model = vgg16(pretrained=True)# 解冻最后几层卷积层
for param in list(model.features.parameters())[-8:]:param.requires_grad = True# 修改全连接层
model.classifier = nn.Sequential(nn.Linear(25088, 4096), nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(4096, 1024), nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(1024, len(classeNames))  # 输出类别数
)model.to(device)
model

3. 损失函数与优化器优化

优化点
  1. 使用 AdamW 替代 SGD,提高优化效率。
  2. 增加权重衰减(Weight Decay)控制模型复杂度。
  3. 调整学习率策略:使用 CosineAnnealingLR
优化效果

更快的收敛速度,更平稳的优化过程,减少过拟合风险。

import torch.optim as optimlearn_rate = 1e-4
optimizer = optim.AdamW(model.parameters(), lr=learn_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
loss_fn = nn.CrossEntropyLoss()

4. 训练与测试循环优化

优化点
  1. 记录每个 epoch 的学习率,便于分析。
  2. 添加梯度裁剪,防止梯度爆炸。
  3. 打印更多信息帮助调试(如每轮训练时间)。
优化效果

更稳定的训练过程,便于调试与分析。

import time
import copyepochs = 40
train_loss, train_acc = [], []
test_loss, test_acc = [], []
best_acc = 0for epoch in range(epochs):start_time = time.time()# 训练模式model.train()size = len(train_dl.dataset)train_correct, train_epoch_loss = 0, 0for X, y in train_dl:X, y = X.to(device), y.to(device)optimizer.zero_grad()pred = model(X)loss = loss_fn(pred, y)loss.backward()# 梯度裁剪torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()train_correct += (pred.argmax(1) == y).type(torch.float).sum().item()train_epoch_loss += loss.item()# 测试模式model.eval()size = len(test_dl.dataset)test_correct, test_epoch_loss = 0, 0with torch.no_grad():for X, y in test_dl:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_epoch_loss += loss.item()# 学习率更新scheduler.step()# 保存最佳模型test_accuracy = test_correct / sizeif test_accuracy > best_acc:best_acc = test_accuracybest_model = copy.deepcopy(model)train_loss.append(train_epoch_loss / len(train_dl))train_acc.append(train_correct / len(train_dl.dataset))test_loss.append(test_epoch_loss / len(test_dl))test_acc.append(test_accuracy)end_time = time.time()print(f"Epoch {epoch+1:02d}, Train Acc: {train_acc[-1]*100:.2f}%, Test Acc: {test_acc[-1]*100:.2f}%, "f"Train Loss: {train_loss[-1]:.4f}, Test Loss: {test_loss[-1]:.4f}, "f"LR: {scheduler.get_last_lr()[0]:.6f}, Time: {end_time - start_time:.2f}s")# 保存模型
torch.save(best_model.state_dict(), './best_model.pth')
print("Training complete!")

5. 效果

六、手动搭建VGG-16模型

 VGG-16结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示;
  • 3个全连接层(Fully connected Layer),用classifier表示;
  • 5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VGG16(nn.Module):def __init__(self, num_classes=1000):super(VGG16, self).__init__()# 定义卷积层和池化层self.features = nn.Sequential(# Block 1nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 112x112# Block 2nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 56x56# Block 3nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 28x28# Block 4nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 14x14# Block 5nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),  # 7x7)# 定义全连接层self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = torch.flatten(x, 1)  # 展平x = self.classifier(x)return x# 测试网络是否能正常运行
if __name__ == "__main__":model = VGG16(num_classes=1000)print(model)# 测试输入input_tensor = torch.randn(1, 3, 224, 224)  # Batch size=1, RGB图像, 224x224output = model(input_tensor)print("输出形状:", output.shape) # torch.Size([1, 1000])

七、个人学习总结

在这个项目中,我完整体验了从数据预处理到模型训练再到结果优化的深度学习项目流程,不仅巩固了理论知识,也提升了实践能力。在完成VGG-16网络的调用与优化过程中,我收获颇丰,并从多个方面得到了深刻的经验和启发,这些经验将极大地应用于后续的深度学习研究和实践。

1. 深度学习项目的系统化流程

本次实践让我认识到,一个完整的深度学习项目离不开前期准备、模型构建、训练调试与后期优化等环节的有机结合。例如,在数据预处理阶段,我学习了如何利用torchvision.transforms进行数据增强,包括随机裁剪、颜色抖动等操作,这些方法有效提升了模型的泛化能力,减少了过拟合现象。未来在处理其他数据集时,这些增强技术能够让我快速应对数据样本不足的问题。

2. 迁移学习的威力

通过调用预训练的VGG-16网络,我深刻理解了迁移学习在小样本数据集上的重要性。冻结部分卷积层参数,仅微调全连接层,大幅降低了训练难度并缩短了训练时间。最终测试集准确率达到82%,这远超我的预期。未来在处理类似图像分类任务时,迁移学习将是我优先选择的策略之一。

3. 模型优化的重要性

本次项目让我认识到,不同的优化策略对模型性能提升有显著影响。通过引入动态学习率调节策略torch.optim.lr_scheduler,模型在训练中保持了更平稳的收敛过程。尤其是在采用CosineAnnealingLR优化器时,我看到了如何通过调节学习率在训练后期避免陷入局部最优。此外,使用AdamW替代传统的SGD优化器,也让我意识到针对不同模型和任务选择适合的优化方法的重要性。

4. 自主搭建模型的能力提升

尽管调用官方VGG-16框架已经完成了项目需求,我仍尝试手动搭建了VGG-16模型,这加深了我对其内部结构的理解。从卷积层到全连接层的逐步构建,使我对参数设置和计算流程有了更直观的认识。举例来说,VGG-16中使用3x3卷积核而非更大的卷积核,这种设计在实际搭建时显得尤为高效,因为它既保留了更细粒度的特征信息,又显著减少了参数量。

5. 项目调试与性能分析

在项目实施过程中,我多次遭遇训练不收敛、准确率波动较大的问题。通过引入梯度裁剪(Gradient Clipping)和记录每轮训练时间,我学会了如何更好地监控训练过程并诊断问题。未来在复杂任务中,这些调试手段可以帮助我快速定位问题所在,从而更高效地改进模型。

6. 数据可视化的价值

通过绘制训练集和测试集的准确率与损失曲线,我更加直观地了解了模型的收敛过程和潜在问题。例如,在早期训练中,测试集准确率上升缓慢,而训练集准确率快速提升,我可以据此判断是否存在过拟合问题。这让我深刻认识到可视化是深度学习项目中不可或缺的一部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/479652.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

预处理指令

1.预定义符号 预定义符号是在预处理阶段处理的。 1.__FILE__ // 进⾏编译的源⽂件 2.__LINE__ // ⽂件当前的⾏号 3.__DATE__ // ⽂件被编译的⽇期 4.__TIME__ // ⽂件被编译的时间 5.__STDC__ // 如果编译器遵循 ANSI C ,其值为 1 ,否则未定义…

Android 12.0新增自定义HIDL问题记录

代码 流程和代码可以参考这位大佬的 https://blog.csdn.net/learnframework/article/details/134621556 主要记录发现的问题以及解决方式。 1.首先最外层的bp不要使用update-makefiles.sh 去生成 ,基本上interface下面的文件夹都会被影响,可能会导致编…

(即插即用模块-Attention部分) 二十、(2021) GAA 门控轴向注意力

文章目录 1、Gated Axial-Attention2、代码实现 paper:Medical Transformer: Gated Axial-Attention for Medical Image Segmentation Code:https://github.com/jeya-maria-jose/Medical-Transformer 1、Gated Axial-Attention 论文首先分析了 ViTs 在训…

[C++ 核心编程]笔记 4.1 封装

4.1.1 封装的意义 封装是C面向对象三大特性之一 封装的意义: 将属性和行为作为一个整体,表现生活中的事物将属性和行为加以权限控制 封装意义一: 在设计类的时候,属性和行为写在一起,表现事物 语法: class 类名{ 访问权限: 属性 /行为 }…

韩顺平 一周学会Linux | Linux 实操篇-组管理和权限管理

一、Linux 组 1. 组基本介绍 在linux 中的每个用户必须属于一个组,不能独立于组外。在linux 中每个文件有所有者、所在组、其它组的概念。 2. 文件/目录 所有者 一般为文件的创建者,谁创建了该文件,就自然的成为该文件的所有者。 1) 查看文件所有者&…

FBX福币交易所创业板指放量大涨2.73% 谷子经济概念持续爆发

查查配分析11月27日电 27日,A股三大指数探底回升,沪指涨逾1%,创业板指涨近3%。全市成交额较上个交易日放量至1.49万亿元。 截至收盘,上证指数涨1.53%,报3309.78点;深证成指涨2.25%,报10566.10点;创业板指涨2.73%,报2208.78点。 FBX福币凭借用户友好的界面和对透明度的承诺,迅速…

前端性能优化之任务管理/调度

浏览器的一帧 前面我们提到如何使用requestAnimationFrame来检测是否产生了卡顿。除此之外,如果你也处理过简单的异步任务管理(闲时执行等),还可以使用requestIdleCallback来检测卡顿。其实,requestAnimationFrame和requestIdleCallback都会在浏览器的每一帧中被执行到,…

Ubuntu20.04安装kalibr

文章目录 环境配置安装wxPython下载编译测试报错1问题描述问题分析问题解决 参考 环境配置 Ubuntu20.04,python3.8.10,boost自带的1.71 sudo apt update sudo apt-get install python3-setuptools python3-rosinstall ipython3 libeigen3-dev libboost…

QUAD-MxFE平台

QUAD-MxFE平台 16Tx/16Rx直接L/S/C频段采样相控阵/雷达/电子战/卫星通信开发平台 概览 优势和特点 四通道MxFE数字化处理卡 使用MxFE的多通道、宽带系统开发平台 与Xilinx VCU118评估板(不包括)搭配使用 16个RF接收(Rx)通道(32个数字Rx通道…

互联网视频推拉流EasyDSS视频直播点播平台视频转码有哪些技术特点和应用?

视频转码本质上是一个先解码再编码的过程。在转码过程中,原始视频码流首先被解码成原始图像数据,然后再根据目标编码标准、分辨率、帧率、码率等参数重新进行编码。这样,转换前后的码流可能遵循相同的视频编码标准,也可能不遵循。…

开源加密库mbedtls及其Windows编译库

目录 1 项目简介 2 功能特性 3 性能优势 4 平台兼容性 5 应用场景 6 特点 7 Windows编译 8 编译静态库及其测试示例下载 1 项目简介 Mbed TLS是一个由ARM Maintained的开源项目,它提供了一个轻量级的加密库,适用于嵌入式系统和物联网设备。这个项…

GESP C++等级考试 二级真题(2024年9月)

若需要在线模拟考试,可进入题库中心,在线备考,检验掌握程度: https://www.hixinao.com/tidan/exam-157.html?time1732669362&sid172&index1

upload-labs 靶场(11~21)

免责声明 本博客文章仅供教育和研究目的使用。本文中提到的所有信息和技术均基于公开来源和合法获取的知识。本文不鼓励或支持任何非法活动,包括但不限于未经授权访问计算机系统、网络或数据。 作者对于读者使用本文中的信息所导致的任何直接或间接后果不承担任何…

嵌入式硬件实战基础篇(四)多路直流稳压电源

设计一个多路直流稳压电源 要求设计制作一个多路输出直流稳压电源,可将220 V / 5 0HZ交流电转换为5路直流稳压输出。具体要求: 输出直流电压 12V, 5V;和一路输出3- 15V连续可调直流稳压电源: 输出电流Iom500mA; 稳压系数 Sr≤0.05;

【人工智能】深入解析GPT、BERT与Transformer模型|从原理到应用的完整教程

在当今人工智能迅猛发展的时代,自然语言处理(NLP)领域涌现出许多强大的模型,其中GPT、BERT与Transformer无疑是最受关注的三大巨头。这些模型不仅在学术界引起了广泛讨论,也在工业界得到了广泛应用。那么,G…

【计算机视觉+MATLAB】自动检测并可视化圆形目标:通过 imfindcircles 和 viscircles 函数

引言 自动检测图像中的圆形或圆形对象,并可视化检测到的圆形。 函数详解 imfindcircles imfindcircles是MATLAB中的一个函数,用于在图像中检测并找出圆形区域。 基本语法: [centers, radii] imfindcircles(A, radiusRange) [centers, r…

17. C++模板(template)1(泛型编程,函数模板,类模板)

⭐本篇重点:泛型编程,函数模板,类模板 ⭐本篇代码:c学习/07.函数模板 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) 目录 一. 泛型编程 二. 函数模板 2.1 函数模板的格式 2.2 函数模板的简单使用 2.3 函数模板…

学习threejs,设置envMap环境贴图创建反光效果

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.CubeTextureLoader 立…

v-for产生 You may have an infinite update loop in a component render function

参考文章&#xff1a; 报错解析 [Vue warn]: You may have an infinite update loop in a component render function. 另外一个解决方法 例如: MyList 是一个数组&#xff0c;我希望将排序后的结果返回进行for循环&#xff0c;因此设计了一个myMethon函数 <div v-for"…

spring boot框架漏洞复现

spring - java开源框架有五种 Spring MVC、SpringBoot、SpringFramework、SpringSecurity、SpringCloud spring boot版本 版本1: 直接就在根下 / 版本2:根下的必须目录 /actuator/ 端口:9093 spring boot搭建 1:直接下载源码打包 2:运行编译好的jar包:actuator-testb…