【人工智能】Python与强化学习:从零实现多臂老虎机(Multi-Armed Bandit)问题

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!

强化学习是一种模仿生物行为的学习方法,在不确定环境中寻找最优策略。多臂老虎机(Multi-Armed Bandit, MAB)是强化学习的经典问题之一,模拟了在多个选择中如何平衡探索和利用,以获取最大的长期回报。本篇文章将详细讲解多臂老虎机问题的理论背景、数学模型,以及如何用Python实现常见的强化学习策略(如 ε-贪婪算法、UCB 和汤普森采样)。文章包含大量代码示例与中文注释,帮助读者深入理解强化学习的核心思想,并掌握在多臂老虎机问题中的应用。


目录

  1. 什么是多臂老虎机?
    • 背景与定义
    • 应用场景
  2. 强化学习与多臂老虎机的理论基础
    • 奖励函数
    • 探索与利用
  3. Python实现多臂老虎机模拟环境
  4. ε-贪婪算法
    • 理论分析
    • Python实现与实验
  5. 上置信界(UCB)算法
    • 理论分析
    • Python实现与实验
  6. 汤普森采样(Thompson Sampling)算法
    • 理论分析
    • Python实现与实验
  7. 策略比较与性能评估
  8. 总结与扩展

1. 什么是多臂老虎机?

1.1 背景与定义

多臂老虎机问题是一种决策优化问题,源于赌场中的老虎机场景:

假设有 ( k ) 台老虎机,每台老虎机的奖励分布未知。玩家的目标是在有限的尝试次数内选择拉动哪台老虎机的手柄,以最大化累积奖励。

数学上,多臂老虎机问题可以描述为:

  • ( k ) 个老虎机对应 ( k ) 个概率分布 ( P_1, P_2, \ldots, P_k )。
  • 每次选择老虎机 ( i ) 会产生一个奖励 ( r \sim P_i )。
  • 玩家希望找到一个策略 ( \pi ),使得累计奖励最大化。

1.2 应用场景

多臂老虎机问题的应用场景包括:

  • 广告推荐:选择显示哪种广告,以最大化点击率。
  • 医疗试验:选择最佳治疗方法以提高疗效。
  • Web实验:优化网站布局以提升用户体验。

2. 强化学习与多臂老虎机的理论基础

2.1 奖励函数

在多臂老虎机问题中,奖励函数定义为:
R = ∑ t = 1 T r t R = \sum_{t=1}^T r_t R=t=1Trt
其中:

  • ( r_t ) 是在第 ( t ) 次尝试中的奖励。
  • ( T ) 是尝试的总次数。

2.2 探索与利用

多臂老虎机问题的核心挑战是**探索(Exploration)利用(Exploitation)**之间的权衡:

  • 探索:尝试未被充分选择的老虎机,以了解其奖励分布。
  • 利用:选择当前已知最优的老虎机,以最大化即时奖励。

解决这一权衡需要设计策略,常见的策略包括:

  1. ε-贪婪算法:在大多数情况下选择当前最优动作,但偶尔随机探索。
  2. 上置信界(UCB)算法:使用奖励的置信区间来指导选择。
  3. 汤普森采样(Thompson Sampling):基于贝叶斯更新概率分布进行采样。

3. Python实现多臂老虎机模拟环境

首先,我们实现一个多臂老虎机的模拟环境,用于生成奖励。

import numpy as npclass MultiArmedBandit:"""多臂老虎机模拟环境"""def __init__(self, arms):"""初始化:param arms: 每个老虎机的中奖概率列表"""self.arms = armsself.k = len(arms)def pull(self, arm):"""拉动指定老虎机的手柄:param arm: 选择的老虎机编号(0 <= arm < k):return: 奖励(0 或 1)"""if arm < 0 or arm >= self

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483116.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Proteus8.17下载安装教程

Proteus是一款嵌入式系统仿真开发软件&#xff0c;实现了从原理图设计、单片机编程、系统仿真到PCB设计&#xff0c;真正实现了从概念到产品的完整设计&#xff0c;其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等&#xff0c;能够帮助用…

Vue教程|搭建vue项目|Vue-CLI2.x 模板脚手架

一、项目构建环境准备 在构建Vue项目之前&#xff0c;需要搭建Node环境以及Vue-CLI脚手架&#xff0c;由于本篇文章为上一篇文章的补充&#xff0c;也是为了给大家分享更为完整的搭建vue项目方式&#xff0c;所以环境准备部分采用Vue教程&#xff5c;搭建vue项目&#xff5c;V…

一款支持80+语言,包括:拉丁文、中文、阿拉伯文、梵文等开源OCR库

大家好&#xff0c;今天给大家分享一个基于PyTorch的OCR库EasyOCR&#xff0c;它允许开发者通过简单的API调用来读取图片中的文本&#xff0c;无需复杂的模型训练过程。 项目介绍 EasyOCR 是一个基于Python的开源项目&#xff0c;它提供了一个简单易用的光学字符识别&#xff…

cocotb pytest

打印python中的print &#xff0c; 应该使用 pytest -s

【C++】STL——map和set

目录 1、序列式容器和关联式容器前 2、set 2.1 set类的介绍 2.2 set的构造和迭代器 2.3 set的增删查 set 的插入 set的查找 set的删除 2.4 multiset和set的差异 3、map 3 .1 pair类型 3.2 map的构造 3.3 map的增删查 map的构造遍历 map的插入 map的删除 map的查…

java基础概念46-数据结构1

一、引入 List集合的三种实现类使用了不同的数据结构&#xff01; 二、数据结构的定义 三、常见的数据结构 3-1、栈 特点&#xff1a;先进后出&#xff0c;后进先出。 java内存容器&#xff1a; 3-2、队列 特点&#xff1a;先进先出、后进后出。 栈VS队列-小结 3-3、数组 3-…

Docker:在 ubuntu 系统上生成和加载 Docker 镜像

本文将介绍在 ubuntu系统上进行 Docker 镜像的生成和加载方法和代码。 文章目录 一、下载和安装 docker二、加载 docker 文件三、保存你的镜像四、将镜像上传到云端并通过连接下载和加载 Docker 镜像五、Docker 容器和本地的文件交互5.1 从容器复制文件到本地宿主机5.1.1 单个文…

《数据挖掘:概念、模型、方法与算法(第三版)》

嘿&#xff0c;数据挖掘的小伙伴们&#xff01;今天我要给你们介绍一本超级实用的书——《数据挖掘&#xff1a;概念、模型、方法与算法》第三版。这本书是数据挖掘领域的经典之作&#xff0c;由该领域的知名专家编写&#xff0c;系统性地介绍了在高维数据空间中分析和提取大量…

做异端中的异端 -- Emacs裸奔之路4: 你不需要IDE

确切地说&#xff0c;你不需要在IDE里面编写或者阅读代码。 IDE用于Render资源文件比较合适&#xff0c;但处理文本&#xff0c;并不划算。 这的文本文件&#xff0c;包括源代码&#xff0c;配置文件&#xff0c;文档等非二进制文件。 先说说IDE带的便利: 函数或者变量的自动…

【C++】编程题目分析与实现回顾:从浮点数运算到整型转换的全面解读

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目一&#xff1a;计算成绩问题分析与优化实现优化后的实现优势 &#x1f4af;题目二&#xff1a;浮点数向零舍入不同实现方式的比较1. 使用强制类型转换 (int)2. 使用标准…

时间表格Java

输入&#xff1a;XXX XXX 小时 分钟 输出&#xff1a; XXX&#xff1a;XXX ~ XXX: XXX XXX&#xff1a;XXX ~ XXX: XXX XXX&#xff1a;XXX ~ XXX: XXX 处理&#xff1a;间隔五分钟、区间45分钟 14:15 ~ 15:0 15:5 ~ 15:50 15:55 ~ 16:40 16:45 ~ 17:30 17:35 ~ 18:20…

Spring AOP 的实现和切点表达式的介绍

1. 快速入手 AOP&#xff1a;就是面相切面编程&#xff0c;切面指的就是某一类特定的问题&#xff0c;也可以理解为面相特定方法编程&#xff0c;例如之前使用的拦截器&#xff0c;就是 AOP 思想的一种应用&#xff0c;统一数据返回格式和统一异常处理也是 AOP 思想的实现方式…

shell脚本30个案例(五)

前言&#xff1a; 通过一个多月的shell学习&#xff0c;总共写出30个案例&#xff0c;分批次进行发布&#xff0c;这次总共发布了5个案例&#xff0c;希望能够对大家的学习和使用有所帮助&#xff0c;更多案例会在下期进行发布。 案例二十一、系统内核优化 1.问题&#xff1…

一文解析Kettle开源ETL工具!

ETL&#xff08;Extract, Transform, Load&#xff09;工具是用于数据抽取、转换和加载的软件工具&#xff0c;用于支持数据仓库和数据集成过程。Kettle作为传统的ETL工具备受用户推崇。本文就来详细说下Kettle。 一、Kettle是什么&#xff1f; Kettle 是一款开源的 ETL&#x…

IDEA使用HotSwapHelper进行热部署

目录 前言JDK1.8特殊准备DECVM安装插件安装与配置参考文档相关下载 前言 碰到了一个项目&#xff0c;用jrebel启动项目时一直报错&#xff0c;不用jrebel时又没问题&#xff0c;找不到原因&#xff0c;又不想放弃热部署功能 因此思考能否通过其他方式进行热部署&#xff0c;找…

使用无监督机器学习算法进行预测性维护

目录 一、说明 二、主成分分析&#xff08;PCA&#xff09; 三、 K-means方法 四、K-最近邻 (KNN) 五、密度的空间聚类 (DBSCAN) 六、更先进的预测性维护算法 6.1 独立成分分析 (ICA) 6.2 PCA 和 ICA 有什么区别&#xff1f; 6.3 OPTICS 聚类 6.4 自组织映射 (SOM) 6.5 局部敏…

Elasticsearch 进阶

核心概念 索引(Index) 一个索引就是一个拥有几分相似特征的文档的集合。比如说&#xff0c;你可以有一个客户数据的索引&#xff0c;另一个产品目录的索引&#xff0c;还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母)&#xff0c;并且当我们要对这个索…

107.【C语言】数据结构之二叉树求总节点和第K层节点的个数

目录 1.求二叉树总的节点的个数 1.容易想到的方法 代码 缺陷 思考:能否在TreeSize函数内定义静态变量解决size的问题呢? 其他写法 运行结果 2.最好的方法:分而治之 代码 运行结果 2.求二叉树第K层节点的个数 错误代码 运行结果 修正 运行结果 其他写法 1.求二…

vue2 虚拟DOM 和 真实DOM (概念、作用、Diff 算法)

虚拟 DOM 和 真实DOM&#xff08;概念、作用、Diff 算法&#xff09; 1.1 概念 真实 DOM&#xff08;Document Object Model&#xff09;&#xff1a;是浏览器中用于表示文档结构的树形结构。 <h2>你好</h2>虚拟DOM&#xff1a;用 JavaScript 对象来模拟真实 DOM…

Spring AI 框架介绍

Spring AI是一个面向人工智能工程的应用框架。它的目标是将Spring生态系统的设计原则&#xff08;如可移植性和模块化设计&#xff09;应用于AI领域&#xff0c;并推广使用pojo作为AI领域应用的构建模块。 概述 Spring AI 现在(2024/12)已经支持语言&#xff0c;图像&#xf…